Nass Sara R, Long Jonathan Z, Schlosburg Joel E, Cravatt Benjamin F, Lichtman Aron H, Kinsey Steven G
Department of Psychology, West Virginia University, Morgantown, WV, 26506, USA.
J Neuroimmune Pharmacol. 2015 Jun;10(2):364-70. doi: 10.1007/s11481-015-9593-1. Epub 2015 Feb 27.
Cannabinoid receptor agonists, such as Δ(9)-THC, the primary active constituent of Cannabis sativa, have anti-pyrogenic effects in a variety of assays. Recently, attention has turned to the endogenous cannabinoid system and how endocannabinoids, including 2-arachidonoylglycerol (2-AG) and anandamide, regulate multiple homeostatic processes, including thermoregulation. Inhibiting endocannabinoid catabolic enzymes, monoacylglycerol lipase (MAGL) or fatty acid amide hydrolase (FAAH), elevates levels of 2-AG or anandamide in vivo, respectively. The purpose of this experiment was to test the hypothesis that endocannabinoid catabolic enzymes function to maintain thermal homeostasis in response to hypothermic challenge. In separate experiments, male C57BL/6J mice were administered a MAGL or FAAH inhibitor, and then challenged with the bacterial endotoxin lipopolysaccharide (LPS; 2 mg/kg ip) or a cold (4 °C) ambient environment. Systemic LPS administration caused a significant decrease in core body temperature after 6 h, and this hypothermia persisted for at least 12 h. Similarly, cold environment induced mild hypothermia that resolved within 30 min. JZL184 exacerbated hypothermia induced by either LPS or cold challenge, both of which effects were blocked by rimonabant, but not SR144528, indicating a CB1 cannabinoid receptor mechanism of action. In contrast, the FAAH inhibitor, PF-3845, had no effect on either LPS-induced or cold-induced hypothermia. These data indicate that unlike direct acting cannabinoid receptor agonists, which elicit profound hypothermic responses on their own, neither MAGL nor FAAH inhibitors affect normal body temperature. However, these endocannabinoid catabolic enzymes play distinct roles in thermoregulation following hypothermic challenges.
大麻素受体激动剂,如大麻的主要活性成分Δ(9)-四氢大麻酚(Δ(9)-THC),在多种试验中具有解热作用。最近,人们的注意力转向了内源性大麻素系统,以及内源性大麻素,包括2-花生四烯酸甘油酯(2-AG)和花生四烯乙醇胺,如何调节包括体温调节在内的多种稳态过程。抑制内源性大麻素分解代谢酶,单酰基甘油脂肪酶(MAGL)或脂肪酸酰胺水解酶(FAAH),可分别提高体内2-AG或花生四烯乙醇胺的水平。本实验的目的是检验以下假设:内源性大麻素分解代谢酶在应对低温挑战时发挥维持热稳态的作用。在单独的实验中,给雄性C57BL/6J小鼠施用MAGL或FAAH抑制剂,然后用细菌内毒素脂多糖(LPS;2mg/kg腹腔注射)或寒冷(4°C)的环境进行挑战。全身注射LPS后6小时,核心体温显著下降,这种低温持续至少12小时。同样,寒冷环境诱导的轻度低温在30分钟内消退。JZL184加剧了LPS或寒冷挑战诱导的低温,这两种作用均被利莫那班阻断,但未被SR144528阻断,表明其作用机制为CB1大麻素受体。相比之下,FAAH抑制剂PF-3845对LPS诱导的或寒冷诱导的低温均无影响。这些数据表明,与自身能引起深度低温反应的直接作用大麻素受体激动剂不同,MAGL和FAAH抑制剂均不影响正常体温。然而,这些内源性大麻素分解代谢酶在低温挑战后的体温调节中发挥着不同的作用。