Suppr超能文献

F1杂种中的基因组重组揭示了反转录转座子在生殖隔离中的作用。

Genome reorganization in F1 hybrids uncovers the role of retrotransposons in reproductive isolation.

作者信息

Senerchia Natacha, Felber François, Parisod Christian

机构信息

Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, Neuchâtel 2000, Switzerland.

Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, Neuchâtel 2000, Switzerland Musée et Jardins Botaniques Cantonaux, Lausanne 1007, Switzerland.

出版信息

Proc Biol Sci. 2015 Apr 7;282(1804):20142874. doi: 10.1098/rspb.2014.2874.

Abstract

Interspecific hybridization leads to new interactions among divergent genomes, revealing the nature of genetic incompatibilities having accumulated during and after the origin of species. Conflicts associated with misregulation of transposable elements (TEs) in hybrids expectedly result in their activation and genome-wide changes that may be key to species boundaries. Repetitive genomes of wild wheats have diverged under differential dynamics of specific long terminal repeat retrotransposons (LTR-RTs), offering unparalleled opportunities to address the underpinnings of plant genome reorganization by selfish sequences. Using reciprocal F1 hybrids between three Aegilops species, restructuring and epigenetic repatterning was assessed at random and LTR-RT sequences with amplified fragment length polymorphism and sequence-specific amplified polymorphisms as well as their methylation-sensitive counterparts, respectively. Asymmetrical reorganization of LTR-RT families predicted to cause conflicting interactions matched differential survival of F1 hybrids. Consistent with the genome shock model, increasing divergence of merged LTR-RTs yielded higher levels of changes in corresponding genome fractions and lead to repeated reorganization of LTR-RT sequences in F1 hybrids. Such non-random reorganization of hybrid genomes is coherent with the necessary repression of incompatible TE loci in support of hybrid viability and indicates that TE-driven genomic conflicts may represent an overlooked factor supporting reproductive isolation.

摘要

种间杂交导致不同基因组之间产生新的相互作用,揭示了物种起源期间及之后积累的遗传不相容性的本质。杂种中转座元件(TEs)调控异常相关的冲突预计会导致其激活和全基因组变化,这可能是物种界限的关键。野生小麦的重复基因组在特定长末端重复逆转录转座子(LTR-RTs)的差异动态下发生了分化,为通过自私序列解决植物基因组重组的基础问题提供了无与伦比的机会。利用三种山羊草属物种之间的正反交F1杂种,分别通过扩增片段长度多态性和序列特异性扩增多态性及其甲基化敏感对应物对随机的LTR-RT序列进行重组和表观遗传重编程评估。预计会导致冲突相互作用的LTR-RT家族的不对称重组与F1杂种的差异存活相匹配。与基因组冲击模型一致,合并的LTR-RTs的差异增加导致相应基因组部分的变化水平更高,并导致F1杂种中LTR-RT序列的重复重组。杂种基因组的这种非随机重组与为支持杂种活力而对不相容TE位点的必要抑制相一致,表明TE驱动的基因组冲突可能是支持生殖隔离的一个被忽视的因素。

相似文献

1
Genome reorganization in F1 hybrids uncovers the role of retrotransposons in reproductive isolation.
Proc Biol Sci. 2015 Apr 7;282(1804):20142874. doi: 10.1098/rspb.2014.2874.
2
Differential introgression and reorganization of retrotransposons in hybrid zones between wild wheats.
Mol Ecol. 2016 Jun;25(11):2518-28. doi: 10.1111/mec.13515. Epub 2016 Feb 16.
7
Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina.
New Phytol. 2009 Dec;184(4):1003-15. doi: 10.1111/j.1469-8137.2009.03029.x. Epub 2009 Sep 23.
8
Birth and Death of LTR-Retrotransposons in .
Genetics. 2018 Nov;210(3):1039-1051. doi: 10.1534/genetics.118.301198. Epub 2018 Aug 29.

引用本文的文献

2
The role of recombination landscape in species hybridisation and speciation.
Front Plant Sci. 2023 Jul 6;14:1223148. doi: 10.3389/fpls.2023.1223148. eCollection 2023.
3
4
Evolution and origin of bread wheat.
Plant Cell. 2022 Jul 4;34(7):2549-2567. doi: 10.1093/plcell/koac130.
5
Specificities and Dynamics of Transposable Elements in Land Plants.
Biology (Basel). 2022 Mar 23;11(4):488. doi: 10.3390/biology11040488.
6
Balanced Genome Triplication in Wheat Causes Premature Growth Arrest and an Upheaval of Genome-Wide Gene Regulation.
Front Genet. 2020 Jul 8;11:687. doi: 10.3389/fgene.2020.00687. eCollection 2020.
7
Eukaryote hybrid genomes.
PLoS Genet. 2019 Nov 27;15(11):e1008404. doi: 10.1371/journal.pgen.1008404. eCollection 2019 Nov.

本文引用的文献

2
The contributions of transposable elements to the structure, function, and evolution of plant genomes.
Annu Rev Plant Biol. 2014;65:505-30. doi: 10.1146/annurev-arplant-050213-035811. Epub 2014 Feb 21.
4
Reconstructing de novo silencing of an active plant retrotransposon.
Nat Genet. 2013 Sep;45(9):1029-39. doi: 10.1038/ng.2703. Epub 2013 Jul 14.
6
Transposable elements and microevolutionary changes in natural populations.
Mol Ecol Resour. 2013 Sep;13(5):765-75. doi: 10.1111/1755-0998.12133. Epub 2013 Jun 25.
7
Natural pathways to polyploidy in plants and consequences for genome reorganization.
Cytogenet Genome Res. 2013;140(2-4):79-96. doi: 10.1159/000351318. Epub 2013 Jun 8.
8
Investigating incipient speciation in Arabidopsis lyrata from patterns of transmission ratio distortion.
Genetics. 2013 Jul;194(3):697-708. doi: 10.1534/genetics.113.152561. Epub 2013 May 11.
10
Is junk DNA bunk? A critique of ENCODE.
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5294-300. doi: 10.1073/pnas.1221376110. Epub 2013 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验