Ray Tyler R, Lettiere Bethany, de Rutte Joseph, Pennathur Sumita
Department of Mechanical Engineering, University of California, Santa Barabara, Building II, Room 2355, Santa Barbara, California 93106-5070, United States.
Langmuir. 2015 Mar 31;31(12):3577-86. doi: 10.1021/la504511j. Epub 2015 Mar 17.
Plasmonic nanoparticles are used in a wide variety of applications over a broad array of fields including medicine, energy, and environmental chemistry. The continued successful development of this material class requires the accurate characterization of nanoparticle stability for a variety of solution-based conditions. Although many characterization methods exists, there is an absence of a unified, quantitative means for assessing the colloidal stability of plasmonic nanoparticles. We present the particle instability parameter (PIP) as a robust, quantitative, and generalizable characterization technique based on UV-vis absorbance spectroscopy to characterize colloidal instability. We validate PIP performance with both traditional and alternative characterization methods by measuring gold nanorod instability in response to different salt (NaCl) concentrations. We further measure gold nanorod stability as a function of solution pH, salt, and buffer (type and concentration), nanoparticle concentration, and concentration of free surfactant. Finally, these results are contextualized within the literature on gold nanorod stability to establish a standardized methodology for colloidal instability assessment.
等离子体纳米颗粒被广泛应用于包括医学、能源和环境化学在内的众多领域。这类材料的持续成功开发需要针对各种基于溶液的条件准确表征纳米颗粒的稳定性。尽管存在许多表征方法,但缺乏一种统一的、定量的手段来评估等离子体纳米颗粒的胶体稳定性。我们提出了颗粒不稳定性参数(PIP),这是一种基于紫外可见吸收光谱的强大、定量且可推广的表征技术,用于表征胶体不稳定性。我们通过测量金纳米棒在不同盐(NaCl)浓度下的不稳定性,用传统和替代表征方法验证了PIP的性能。我们进一步测量了金纳米棒的稳定性与溶液pH值、盐、缓冲液(类型和浓度)、纳米颗粒浓度以及游离表面活性剂浓度之间的关系。最后,这些结果在关于金纳米棒稳定性的文献中进行了背景化处理,以建立一种用于胶体不稳定性评估的标准化方法。