Suppr超能文献

植物物候与生理对陆地总初级生产力的联合控制。

Joint control of terrestrial gross primary productivity by plant phenology and physiology.

作者信息

Xia Jianyang, Niu Shuli, Ciais Philippe, Janssens Ivan A, Chen Jiquan, Ammann Christof, Arain Altaf, Blanken Peter D, Cescatti Alessandro, Bonal Damien, Buchmann Nina, Curtis Peter S, Chen Shiping, Dong Jinwei, Flanagan Lawrence B, Frankenberg Christian, Georgiadis Teodoro, Gough Christopher M, Hui Dafeng, Kiely Gerard, Li Jianwei, Lund Magnus, Magliulo Vincenzo, Marcolla Barbara, Merbold Lutz, Montagnani Leonardo, Moors Eddy J, Olesen Jørgen E, Piao Shilong, Raschi Antonio, Roupsard Olivier, Suyker Andrew E, Urbaniak Marek, Vaccari Francesco P, Varlagin Andrej, Vesala Timo, Wilkinson Matthew, Weng Ensheng, Wohlfahrt Georg, Yan Liming, Luo Yiqi

机构信息

Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019;

Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China;

出版信息

Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2788-93. doi: 10.1073/pnas.1413090112. Epub 2015 Feb 17.

Abstract

Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate-carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy-covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000-2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r(2) = 0.90) and GPP recovery after a fire disturbance in South Dakota (r(2) = 0.88). Additional analysis of the eddy-covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space.

摘要

陆地总初级生产力(GPP)在时间和空间上变化很大。更准确地预测未来气候-碳循环反馈,需要更好地理解这种变异性。最近的研究表明,GPP的变异性是由广泛的生物和非生物因素驱动的,这些因素主要通过植被物候和生理过程的变化起作用。然而,植物物候和生理如何结合起来解释陆地GPP的时空变异性仍不清楚。基于对涡度协方差和卫星衍生数据的分析,我们将年度陆地GPP分解为二氧化碳吸收期(CUP)的长度和二氧化碳吸收的季节性最大能力(GPPmax)。在2000-2010年期间,CUP和GPPmax的乘积解释了北美大部分地区GPP时间变异性的90%以上,以及全球分布的涡度通量塔站点之间GPP的空间变异性。它还解释了2003年欧洲热浪期间GPP的响应(r(2)=0.90)以及南达科他州火灾干扰后GPP的恢复(r(2)=0.88)。对涡度协方差通量数据的进一步分析表明,年度GPP的生物群落间变异由GPPmax的变异比CUP的变异能更好地解释。这些发现表明,陆地GPP受生态系统水平的植物物候和光合能力共同控制,因此,更好地理解GPPmax和CUP对环境和生物变化的响应将改善对GPP在时间和空间上的预测。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验