Suppr超能文献

基于形状和纹理的新型特征用于自动检测肺 CT 中的肋胸膜结节。

Shape and texture based novel features for automated juxtapleural nodule detection in lung CTs.

机构信息

Department of Computer Engineering, Ege University, Izmir, Turkey,

出版信息

J Med Syst. 2015 May;39(5):46. doi: 10.1007/s10916-015-0231-5. Epub 2015 Mar 3.

Abstract

Lung cancer is one of the types of cancer with highest mortality rate in the world. In case of early detection and diagnosis, the survival rate of patients significantly increases. In this study, a novel method and system that provides automatic detection of juxtapleural nodule pattern have been developed from cross-sectional images of lung CT (Computerized Tomography). Shape-based and both shape and texture based 7 features are contributed to the literature for lung nodules. System that we developed consists of six main stages called preprocessing, lung segmentation, detection of nodule candidate regions, feature extraction, feature selection (with five feature ranking criteria) and classification. LIDC dataset containing cross-sectional images of lung CT has been utilized, 1410 nodule candidate regions and 40 features have been extracted from 138 cross-sectional images for 24 patients. Experimental results for 10 classifiers are obtained and presented. Adding our derived features to known 33 features has increased nodule recognition performance from 0.9639 to 0.9679 AUC value on generalized linear model regression (GLMR) for 22 selected features and being reached one of the most successful results in the literature.

摘要

肺癌是全球死亡率最高的癌症类型之一。如果早期发现和诊断,患者的生存率会显著提高。在这项研究中,我们从肺部 CT 图像中开发了一种新的方法和系统,用于自动检测肋胸膜结节模式。已经为肺部结节贡献了基于形状和基于形状和纹理的 7 种特征。我们开发的系统由六个主要阶段组成,称为预处理、肺部分割、结节候选区域检测、特征提取、特征选择(具有五个特征排序标准)和分类。利用包含肺部 CT 横断面图像的 LIDC 数据集,从 24 名患者的 138 个横断面上提取了 1410 个结节候选区域和 40 个特征。得到并展示了 10 种分类器的实验结果。在广义线性模型回归(GLMR)中,将我们推导出的特征添加到已知的 33 个特征中,使 22 个选定特征的结节识别性能从 0.9639 提高到 0.9679 AUC 值,达到了文献中最成功的结果之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验