文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种新的计算效率高的 CT 图像肺结节检测 CAD 系统。

A new computationally efficient CAD system for pulmonary nodule detection in CT imagery.

机构信息

Department of Electrical and Computer Engineering, University of Dayton, 300 College Park, Dayton, OH 45469-0232, United States.

出版信息

Med Image Anal. 2010 Jun;14(3):390-406. doi: 10.1016/j.media.2010.02.004. Epub 2010 Feb 19.


DOI:10.1016/j.media.2010.02.004
PMID:20346728
Abstract

Early detection of lung nodules is extremely important for the diagnosis and clinical management of lung cancer. In this paper, a novel computer aided detection (CAD) system for the detection of pulmonary nodules in thoracic computed tomography (CT) imagery is presented. The paper describes the architecture of the CAD system and assesses its performance on a publicly available database to serve as a benchmark for future research efforts. Training and tuning of all modules in our CAD system is done using a separate and independent dataset provided courtesy of the University of Texas Medical Branch (UTMB). The publicly available testing dataset is that created by the Lung Image Database Consortium (LIDC). The LIDC data used here is comprised of 84 CT scans containing 143 nodules ranging from 3 to 30mm in effective size that are manually segmented at least by one of the four radiologists. The CAD system uses a fully automated lung segmentation algorithm to define the boundaries of the lung regions. It combines intensity thresholding with morphological processing to detect and segment nodule candidates simultaneously. A set of 245 features is computed for each segmented nodule candidate. A sequential forward selection process is used to determine the optimum subset of features for two distinct classifiers, a Fisher Linear Discriminant (FLD) classifier and a quadratic classifier. A performance comparison between the two classifiers is presented, and based on this, the FLD classifier is selected for the CAD system. With an average of 517.5 nodule candidates per case/scan (517.5+/-72.9), the proposed front-end detector/segmentor is able to detect 92.8% of all the nodules in the LIDC/testing dataset (based on merged ground truth). The mean overlap between the nodule regions delineated by three or more radiologists and the ones segmented by the proposed segmentation algorithm is approximately 63%. Overall, with a specificity of 3 false positives (FPs) per case/patient on average, the CAD system is able to correctly identify 80.4% of the nodules (115/143) using 40 selected features. A 7-fold cross-validation performance analysis using the LIDC database only shows CAD sensitivity of 82.66% with an average of 3 FPs per CT scan/case.

摘要

早期发现肺部结节对于肺癌的诊断和临床管理至关重要。本文提出了一种新的计算机辅助检测(CAD)系统,用于检测胸部计算机断层扫描(CT)图像中的肺结节。本文描述了 CAD 系统的架构,并在一个公开可用的数据库上评估了其性能,作为未来研究工作的基准。我们的 CAD 系统中的所有模块的训练和调整都是使用德克萨斯大学医学分校(UTMB)提供的单独和独立数据集完成的。公开可用的测试数据集是由肺图像数据库联盟(LIDC)创建的。这里使用的 LIDC 数据由 84 个 CT 扫描组成,包含 143 个大小在 3 到 30mm 之间的结节,这些结节至少由四位放射科医生之一进行了手动分割。CAD 系统使用全自动的肺部分割算法来定义肺部区域的边界。它结合了强度阈值和形态学处理,以同时检测和分割结节候选者。为每个分割的结节候选者计算了一组 245 个特征。使用顺序前向选择过程来确定两个不同分类器(Fisher 线性判别器(FLD)分类器和二次分类器)的最佳特征子集。还提出了两种分类器之间的性能比较,并在此基础上,选择了 FLD 分类器用于 CAD 系统。对于每个病例/扫描的平均 517.5 个结节候选者(517.5+/-72.9),所提出的前端检测器/分割器能够检测 LIDC/testing 数据集(基于合并的金标准)中所有结节的 92.8%。由三个或更多放射科医生划定的结节区域与所提出的分割算法划定的结节区域之间的平均重叠约为 63%。总体而言,对于每个病例/患者平均 3 个假阳性(FP),CAD 系统能够使用 40 个选定特征正确识别 80.4%(115/143)的结节。仅使用 LIDC 数据库进行的 7 折交叉验证性能分析表明,CAD 的敏感性为 82.66%,平均每个 CT 扫描/病例有 3 个 FP。

相似文献

[1]
A new computationally efficient CAD system for pulmonary nodule detection in CT imagery.

Med Image Anal. 2010-2-19

[2]
Refinement of lung nodule candidates based on local geometric shape analysis and Laplacian of Gaussian kernels.

Comput Biol Med. 2014-9-28

[3]
Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the Lung Image Database Consortium and Image Database Resource Initiative dataset.

Med Image Anal. 2015-2-23

[4]
An analysis of early studies released by the Lung Imaging Database Consortium (LIDC).

Acad Radiol. 2007-11

[5]
A novel computer-aided lung nodule detection system for CT images.

Med Phys. 2011-10

[6]
Evaluation of computer-aided diagnosis (CAD) software for the detection of lung nodules on multidetector row computed tomography (MDCT): JAFROC study for the improvement in radiologists' diagnostic accuracy.

Acad Radiol. 2008-12

[7]
Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database.

Eur Radiol. 2016-7

[8]
Computer aided characterization of the solitary pulmonary nodule using volumetric and contrast enhancement features.

Acad Radiol. 2005-10

[9]
A computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database.

Med Image Anal. 2006-4

[10]
Efficacy of computer-aided detection system and thin-slab maximum intensity projection technique in the detection of pulmonary nodules in patients with resected metastases.

Invest Radiol. 2009-2

引用本文的文献

[1]
Lung nodule detection using a multi-scale convolutional neural network and global channel spatial attention mechanisms.

Sci Rep. 2025-4-10

[2]
A Holistic Approach to Implementing Artificial Intelligence in Lung Cancer.

Indian J Surg Oncol. 2025-2

[3]
Optimizing Bi-LSTM networks for improved lung cancer detection accuracy.

PLoS One. 2025-2-24

[4]
An Automated Diagnosis Method for Lung Cancer Target Detection and Subtype Classification-Based CT Scans.

Bioengineering (Basel). 2024-7-30

[5]
A Lung Nodule Dataset with Histopathology-based Cancer Type Annotation.

Sci Data. 2024-7-27

[6]
A deep learning-based automatic image quality assessment method for respiratory phase on computed tomography chest images.

Quant Imaging Med Surg. 2024-3-15

[7]
Lung nodule false positive reduction using a central attention convolutional neural network on imbalanced data.

Proc SPIE Int Soc Opt Eng. 2023-2

[8]
Enhancing lung cancer detection through hybrid features and machine learning hyperparameters optimization techniques.

Heliyon. 2024-2-14

[9]
TiCNet: Transformer in Convolutional Neural Network for Pulmonary Nodule Detection on CT Images.

J Imaging Inform Med. 2024-2

[10]
Diagnosis and detection of pneumonia using weak-label based on X-ray images: a multi-center study.

BMC Med Imaging. 2023-12-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索