Scholz A M, Bünger L, Kongsro J, Baulain U, Mitchell A D
1Livestock Center Oberschleißheim,Ludwig-Maximilians-University Munich,Sankt-Hubertusstrasse 12,85764 Oberschleißheim,Germany.
2SRUC,Animal and Veterinary Sciences,Roslin Institute Building,Easter Bush,Midlothian,Scotland EH25 9RG,UK.
Animal. 2015 Jul;9(7):1250-64. doi: 10.1017/S1751731115000336. Epub 2015 Mar 6.
The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound - US), 'photon' radiation (X-ray-computed tomography - CT, dual-energy X-ray absorptiometry - DXA) or radio frequency waves (magnetic resonance imaging - MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach.
准确测量活体或胴体组成的能力对于生产性能测试、分级以及最终选择肉用动物或确定其报酬而言至关重要。特别是非侵入性技术的进步主要基于电子和计算机驱动方法的发展,以便提供客观的表型数据。对特定技术的偏好取决于目标动物种类或胴体,同时还涉及技术和实际方面,如准确性、可靠性、成本、便携性、速度、易用性、安全性,以及对于活体测量而言固定或镇静的必要性。这些技术依赖于特定设备驱动的信号,这些信号在原子或分子水平上与体内或胴体中的组织相互作用,从而产生由仪器检测并进行定量分析的二次信号或衰减信号。仪器产生的电磁信号可能源于机械能,如声波(超声波 - US)、“光子”辐射(X射线计算机断层扫描 - CT、双能X射线吸收法 - DXA)或射频波(磁共振成像 - MRI)。由相应仪器检测到的信号经过处理,以测量例如组织深度、面积、体积或脂肪、肌肉(水、蛋白质)以及部分骨骼或骨矿物质的分布。在上述技术中,CT是最准确的,其次是MRI和DXA,而US即使在野外条件下也可用于所有规模的农场动物种类。CT、MRI和US可以提供体积数据,而只有DXA无需(二维)图像处理就能立即给出全身组成结果。简单的US与更昂贵的CT、MRI或DXA相结合,可能会以逐步的方式应用于农场动物选择计划。