Kargov I S, Kleimenov S Y, Savin S S, Tishkov V I, Alekseeva A A
Department of Chemical Enzymology, Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia Innovations and High Technologies MSU Ltd, 109559 Moscow, Russia.
A.N.Bach Institute of Biochemistry, Russian Academy of Sciences, 119074 Moscow, Russia Koltzov Institute of Developmental Biology, Russian Academy of Science, 119334 Moscow, Russia.
Protein Eng Des Sel. 2015 Jun;28(6):171-8. doi: 10.1093/protein/gzv007. Epub 2015 Mar 4.
Previous experiments on substitution of the residue Phe290 to Asp, Asn and Ser in NAD(+)-dependent formate dehydrogenase from soya Glycine max (SoyFDH) showed important role of the residue in enzyme thermal stability and catalytic properties (Alekseeva et al. Prot. Eng. Des. Sel., 2012a; 25: :781-88). In this work, we continued site-directed mutagenesis experiments of the Phe290 and the residue was changed to Ala, Thr, Tyr, Glu and Gln. All amino acid changes resulted in increase of catalytic constant from 2.9 to 3.5-4.7 s(-1). The substitution Phe290Ala led to KM (NAD+) decrease from 13.3 to 8.6 μM, and substitutions Phe290Tyr and Phe290Glu resulted in decrease and increase of KM (HCOO-) from 1.5 to 0.9 and -2.9 mM, respectively. The highest improvement of catalytic properties was observed for SoyFDH Phe290Ala which showed 2-fold higher catalytic efficiency with both substrates. Stability of mutants was examined by study of thermal inactivation kinetics and differential scanning calorimetry (DSC). All five amino acids provided increase of thermal stability of mutant SoyFDH in comparison with wild-type enzyme. Mutant SoyFDH Phe290Glu showed the highest improvement-the stabilization effect was 43 at 56°C. The DSC data agree with results of thermal inactivation kinetics. Substitutions Phe290Tyr, Phe290Thr, Phe290Gln and Phe290Glu provided Tm value increase 0.6°-6.6°. SoyFDH Phe290Glu and previously prepared SoyFDH Phe290Asp show similar thermal stability as enzymes from Candida boidinii and Mycobacterium vaccae N10 and have higher catalytic efficiency with NAD(+) compared with all described FDHs. Therefore, these mutants are very perspective enzymes for coenzyme regeneration in processes of chiral synthesis with dehydrogenases.
先前对大豆(Glycine max)NAD⁺依赖性甲酸脱氢酶(SoyFDH)中Phe290残基替换为Asp、Asn和Ser的实验表明,该残基在酶的热稳定性和催化特性中起重要作用(Alekseeva等人,《蛋白质工程、设计与选择》,2012a;25:781 - 88)。在这项工作中,我们继续对Phe290进行定点诱变实验,将该残基替换为Ala、Thr、Tyr、Glu和Gln。所有氨基酸替换均导致催化常数从2.9增加到3.5 - 4.7 s⁻¹。Phe290Ala替换导致KM(NAD⁺)从13.3 μM降至8.6 μM,Phe290Tyr和Phe290Glu替换分别导致KM(HCOO⁻)从1.5 mM降至0.9 mM和从 - 2.9 mM增加。对于SoyFDH Phe290Ala,观察到催化特性的最大改善,其对两种底物的催化效率高出2倍。通过热失活动力学研究和差示扫描量热法(DSC)检测突变体的稳定性。与野生型酶相比,所有这五个氨基酸均提高了突变体SoyFDH的热稳定性。突变体SoyFDH Phe290Glu表现出最大的改善——在56°C时稳定化效果为43。DSC数据与热失活动力学结果一致。Phe290Tyr、Phe290Thr、Phe290Gln和Phe290Glu替换使Tm值增加0.6° - 6.6°。SoyFDH Phe290Glu和先前制备的SoyFDH Phe290Asp表现出与博伊丁假丝酵母和母牛分枝杆菌N10的酶相似的热稳定性,并且与所有已描述的FDH相比,对NAD⁺具有更高的催化效率。因此,这些突变体是用于脱氢酶手性合成过程中辅酶再生的非常有前景的酶。