Suppr超能文献

从有理数到代数:小数大小和分数关系理解的可分离贡献。

From rational numbers to algebra: separable contributions of decimal magnitude and relational understanding of fractions.

作者信息

DeWolf Melissa, Bassok Miriam, Holyoak Keith J

机构信息

Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Department of Psychology, University of Washington, Seattle, WA 98195, USA.

出版信息

J Exp Child Psychol. 2015 May;133:72-84. doi: 10.1016/j.jecp.2015.01.013. Epub 2015 Mar 2.

Abstract

To understand the development of mathematical cognition and to improve instructional practices, it is critical to identify early predictors of difficulty in learning complex mathematical topics such as algebra. Recent work has shown that performance with fractions on a number line estimation task predicts algebra performance, whereas performance with whole numbers on similar estimation tasks does not. We sought to distinguish more specific precursors to algebra by measuring multiple aspects of knowledge about rational numbers. Because fractions are the first numbers that are relational expressions to which students are exposed, we investigated how understanding the relational bipartite format (a/b) of fractions might connect to later algebra performance. We presented middle school students with a battery of tests designed to measure relational understanding of fractions, procedural knowledge of fractions, and placement of fractions, decimals, and whole numbers onto number lines as well as algebra performance. Multiple regression analyses revealed that the best predictors of algebra performance were measures of relational fraction knowledge and ability to place decimals (not fractions or whole numbers) onto number lines. These findings suggest that at least two specific components of knowledge about rational numbers--relational understanding (best captured by fractions) and grasp of unidimensional magnitude (best captured by decimals)--can be linked to early success with algebraic expressions.

摘要

为了理解数学认知的发展并改进教学实践,识别学习代数等复杂数学主题困难的早期预测因素至关重要。最近的研究表明,在数轴估计任务中分数的表现能够预测代数成绩,而在类似估计任务中整数的表现则不能。我们试图通过测量有理数知识的多个方面来区分代数更具体的前期因素。由于分数是学生接触到的第一个关系表达式的数字,我们研究了对分数关系二分格式(a/b)的理解如何与后期代数成绩相关联。我们让中学生接受一系列测试,旨在测量对分数的关系理解、分数的程序性知识、分数、小数和整数在数轴上的位置以及代数成绩。多元回归分析表明,代数成绩的最佳预测因素是分数关系知识的测量以及将小数(而非分数或整数)放置在数轴上的能力。这些发现表明,有理数知识的至少两个特定组成部分——关系理解(最好由分数体现)和对一维数量的把握(最好由小数体现)——可以与代数表达式的早期成功联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验