Thul R, Rietdorf K, Bootman M D, Coombes S
School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
Biochim Biophys Acta. 2015 Sep;1853(9):2131-43. doi: 10.1016/j.bbamcr.2015.02.019. Epub 2015 Mar 4.
Atrial myocytes in a number of species lack transverse tubules. As a consequence the intracellular calcium signals occurring during each heartbeat exhibit complex spatio-temporal dynamics. These calcium patterns arise from saltatory calcium waves that propagate via successive rounds of diffusion and calcium-induced calcium release. The many parameters that impinge on calcium-induced calcium release and calcium signal propagation make it difficult to know a priori whether calcium waves will successfully travel, or be extinguished. In this study, we describe in detail a mathematical model of calcium signalling that allows the effect of such parameters to be independently assessed. A key aspect of the model is to follow the triggering and evolution of calcium signals within a realistic three-dimensional cellular volume of an atrial myocyte, but with low computational costs. This is achieved by solving the linear transport equation for calcium analytically between calcium release events and by expressing the onset of calcium liberation as a threshold process. The model makes non-intuitive predictions about calcium signal propagation. For example, our modelling illustrates that the boundary of a cell produces a wave-guiding effect that enables calcium ions to propagate further and for longer, and can subtly alter the pattern of calcium wave movement. The high spatial resolution of the modelling framework allows the study of any arrangement of calcium release sites. We demonstrate that even small variations in randomly positioned release sites cause highly heterogeneous cellular responses. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
许多物种的心房肌细胞缺乏横管。因此,每次心跳期间发生的细胞内钙信号呈现出复杂的时空动态。这些钙模式源于跳跃式钙波,其通过连续的扩散和钙诱导的钙释放轮次进行传播。许多影响钙诱导的钙释放和钙信号传播的参数使得很难预先知道钙波是否会成功传播或熄灭。在本研究中,我们详细描述了一种钙信号数学模型,该模型能够独立评估此类参数的影响。该模型的一个关键方面是在心房肌细胞逼真的三维细胞体积内跟踪钙信号的触发和演变,但计算成本较低。这是通过在钙释放事件之间解析求解钙的线性传输方程,并将钙释放的开始表示为阈值过程来实现的。该模型对钙信号传播做出了非直观的预测。例如,我们的建模表明,细胞边界会产生波导效应,使钙离子能够传播得更远、更久,并能微妙地改变钙波运动模式。建模框架的高空间分辨率允许研究钙释放位点的任何排列。我们证明,即使随机定位的释放位点存在微小变化,也会导致高度异质的细胞反应。本文是名为:第13届欧洲钙研讨会的特刊的一部分。