Suppr超能文献

使用随机森林分类器和多目标几何可变形模型对小脑脚进行分割:应用于6型脊髓小脑共济失调

Segmentation of the Cerebellar Peduncles Using a Random Forest Classifier and a Multi-object Geometric Deformable Model: Application to Spinocerebellar Ataxia Type 6.

作者信息

Ye Chuyang, Yang Zhen, Ying Sarah H, Prince Jerry L

机构信息

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA,

出版信息

Neuroinformatics. 2015 Jul;13(3):367-81. doi: 10.1007/s12021-015-9264-7.

Abstract

The cerebellar peduncles, comprising the superior cerebellar peduncles (SCPs), the middle cerebellar peduncle (MCP), and the inferior cerebellar peduncles (ICPs), are white matter tracts that connect the cerebellum to other parts of the central nervous system. Methods for automatic segmentation and quantification of the cerebellar peduncles are needed for objectively and efficiently studying their structure and function. Diffusion tensor imaging (DTI) provides key information to support this goal, but it remains challenging because the tensors change dramatically in the decussation of the SCPs (dSCP), the region where the SCPs cross. This paper presents an automatic method for segmenting the cerebellar peduncles, including the dSCP. The method uses volumetric segmentation concepts based on extracted DTI features. The dSCP and noncrossing portions of the peduncles are modeled as separate objects, and are initially classified using a random forest classifier together with the DTI features. To obtain geometrically correct results, a multi-object geometric deformable model is used to refine the random forest classification. The method was evaluated using a leave-one-out cross-validation on five control subjects and four patients with spinocerebellar ataxia type 6 (SCA6). It was then used to evaluate group differences in the peduncles in a population of 32 controls and 11 SCA6 patients. In the SCA6 group, we have observed significant decreases in the volumes of the dSCP and the ICPs and significant increases in the mean diffusivity in the noncrossing SCPs, the MCP, and the ICPs. These results are consistent with a degeneration of the cerebellar peduncles in SCA6 patients.

摘要

小脑脚由上小脑脚(SCP)、中小脑脚(MCP)和下小脑脚(ICP)组成,是连接小脑与中枢神经系统其他部分的白质束。为了客观有效地研究小脑脚的结构和功能,需要自动分割和量化小脑脚的方法。扩散张量成像(DTI)为实现这一目标提供了关键信息,但仍然具有挑战性,因为在SCP交叉区域(dSCP),张量变化很大。本文提出了一种自动分割小脑脚(包括dSCP)的方法。该方法基于提取的DTI特征使用体积分割概念。将dSCP和小脑脚的非交叉部分建模为单独的对象,并首先使用随机森林分类器结合DTI特征进行分类。为了获得几何上正确的结果,使用多对象几何可变形模型来细化随机森林分类。该方法在5名对照受试者和4名6型脊髓小脑共济失调(SCA6)患者中进行了留一法交叉验证评估。然后用于评估32名对照者和11名SCA6患者群体中小脑脚的组间差异。在SCA6组中,我们观察到dSCP和ICP的体积显著减小,非交叉SCP、MCP和ICP的平均扩散率显著增加。这些结果与SCA6患者小脑脚的退化一致。

相似文献

引用本文的文献

5
Degenerative Ataxias: challenges in clinical research.退行性共济失调:临床研究中的挑战
Ann Clin Transl Neurol. 2016 Nov 17;4(1):53-60. doi: 10.1002/acn3.374. eCollection 2017 Jan.
6
A Bayesian approach to fiber orientation estimation guided by volumetric tract segmentation.基于容积轨迹分割引导的纤维方向估计算法。
Comput Med Imaging Graph. 2016 Dec;54:35-47. doi: 10.1016/j.compmedimag.2016.09.003. Epub 2016 Sep 19.
7
Estimation of fiber orientations using neighborhood information.使用邻域信息估计纤维方向。
Med Image Anal. 2016 Aug;32:243-56. doi: 10.1016/j.media.2016.05.008. Epub 2016 May 16.

本文引用的文献

3
Structural changes in cerebellar outflow tracts after thalamotomy in essential tremor.小脑传出束在原发性震颤丘脑切开术后的结构变化。
Parkinsonism Relat Disord. 2014 May;20(5):554-7. doi: 10.1016/j.parkreldis.2014.02.020. Epub 2014 Mar 5.
6
Improved segmentation of white matter tracts with adaptive Riemannian metrics.基于自适应黎曼度量的白质束分割改进。
Med Image Anal. 2014 Jan;18(1):161-75. doi: 10.1016/j.media.2013.10.007. Epub 2013 Oct 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验