Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
Department of Radiology, University of Maryland School of Medicine, Baltimore, MD, USA.
Med Image Anal. 2016 Aug;32:243-56. doi: 10.1016/j.media.2016.05.008. Epub 2016 May 16.
Data from diffusion magnetic resonance imaging (dMRI) can be used to reconstruct fiber tracts, for example, in muscle and white matter. Estimation of fiber orientations (FOs) is a crucial step in the reconstruction process and these estimates can be corrupted by noise. In this paper, a new method called Fiber Orientation Reconstruction using Neighborhood Information (FORNI) is described and shown to reduce the effects of noise and improve FO estimation performance by incorporating spatial consistency. FORNI uses a fixed tensor basis to model the diffusion weighted signals, which has the advantage of providing an explicit relationship between the basis vectors and the FOs. FO spatial coherence is encouraged using weighted ℓ1-norm regularization terms, which contain the interaction of directional information between neighbor voxels. Data fidelity is encouraged using a squared error between the observed and reconstructed diffusion weighted signals. After appropriate weighting of these competing objectives, the resulting objective function is minimized using a block coordinate descent algorithm, and a straightforward parallelization strategy is used to speed up processing. Experiments were performed on a digital crossing phantom, ex vivo tongue dMRI data, and in vivo brain dMRI data for both qualitative and quantitative evaluation. The results demonstrate that FORNI improves the quality of FO estimation over other state of the art algorithms.
扩散磁共振成像 (dMRI) 数据可用于重建纤维束,例如肌肉和白质中的纤维束。纤维方向 (FO) 的估计是重建过程中的关键步骤,这些估计可能会受到噪声的干扰。本文介绍了一种称为基于邻域信息的纤维方向重建 (FORNI) 的新方法,该方法通过结合空间一致性,可减少噪声的影响并提高 FO 估计性能。FORNI 使用固定的张量基来对扩散加权信号进行建模,这具有提供基向量和 FO 之间显式关系的优点。通过使用加权 l1-范数正则化项来鼓励 FO 空间一致性,该正则化项包含了相邻体素之间的方向信息的相互作用。通过在观察到的和重建的扩散加权信号之间的平方误差来鼓励数据一致性。在对这些竞争目标进行适当加权后,使用块坐标下降算法最小化得到的目标函数,并使用直接的并行化策略来加速处理。在数字交叉体模、离体舌 dMRI 数据和体内脑 dMRI 数据上进行了实验,以进行定性和定量评估。结果表明,FORNI 可改善 FO 估计的质量,优于其他最先进的算法。