Suppr超能文献

内含子miR-338-3p及其宿主基因AATK对代偿性β细胞质量扩张的作用

Contribution of Intronic miR-338-3p and Its Hosting Gene AATK to Compensatory β-Cell Mass Expansion.

作者信息

Jacovetti Cécile, Jimenez Veronica, Ayuso Eduard, Laybutt Ross, Peyot Marie-Line, Prentki Marc, Bosch Fatima, Regazzi Romano

机构信息

Department of Fundamental Neurosciences (C.J., R.R.), University of Lausanne, 1005 Lausanne, Switzerland; Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology (V.J., E.A., F.B.), School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain; Diabetes and Obesity Research Program (R.L.), Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, 2010 New South Wales, Australia; and Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.-L.P., M.P.), and Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, Quebec, H2X 0A9 Canada.

出版信息

Mol Endocrinol. 2015 May;29(5):693-702. doi: 10.1210/me.2014-1299. Epub 2015 Mar 9.

Abstract

The elucidation of the mechanisms directing β-cell mass regeneration and maintenance is of interest, because the deficit of β-cell mass contributes to diabetes onset and progression. We previously found that the level of the microRNA (miRNA) miR-338-3p is decreased in pancreatic islets from rodent models displaying insulin resistance and compensatory β-cell mass expansion, including pregnant rats, diet-induced obese mice, and db/db mice. Transfection of rat islet cells with oligonucleotides that specifically block miR-338-3p activity increased the fraction of proliferating β-cells in vitro and promoted survival under proapoptotic conditions without affecting the capacity of β-cells to release insulin in response to glucose. Here, we evaluated the role of miR-338-3p in vivo by injecting mice with an adeno-associated viral vector permitting specific sequestration of this miRNA in β-cells. We found that the adeno-associated viral construct increased the fraction of proliferating β-cells confirming the data obtained in vitro. miR-338-3p is generated from an intron of the gene coding for apoptosis-associated tyrosine kinase (AATK). Similarly to miR-338-3p, we found that AATK is down-regulated in rat and human islets and INS832/13 β-cells in the presence of the cAMP-raising agents exendin-4, estradiol, and a G-protein-coupled Receptor 30 agonist. Moreover, AATK expression is reduced in islets of insulin resistant animal models and selective silencing of AATK in INS832/13 cells by RNA interference promoted β-cell proliferation. The results point to a coordinated reduction of miR-338-3p and AATK under insulin resistance conditions and provide evidence for a cooperative action of the miRNA and its hosting gene in compensatory β-cell mass expansion.

摘要

阐明指导β细胞质量再生和维持的机制备受关注,因为β细胞质量不足会导致糖尿病的发生和发展。我们之前发现,在显示胰岛素抵抗和代偿性β细胞质量扩张的啮齿动物模型(包括妊娠大鼠、饮食诱导肥胖小鼠和db/db小鼠)的胰岛中,微小RNA(miRNA)miR-338-3p的水平降低。用特异性阻断miR-338-3p活性的寡核苷酸转染大鼠胰岛细胞,可增加体外增殖β细胞的比例,并在促凋亡条件下促进细胞存活,而不影响β细胞对葡萄糖刺激释放胰岛素的能力。在此,我们通过向小鼠注射腺相关病毒载体,使该miRNA在β细胞中特异性隔离,从而评估miR-338-3p在体内的作用。我们发现,腺相关病毒构建体增加了增殖β细胞的比例,证实了体外实验获得的数据。miR-338-3p由编码凋亡相关酪氨酸激酶(AATK)的基因内含子产生。与miR-338-3p类似,我们发现,在存在升高cAMP的药物艾塞那肽-4、雌二醇和G蛋白偶联受体30激动剂的情况下,大鼠和人类胰岛以及INS832/13β细胞中的AATK表达下调。此外,在胰岛素抵抗动物模型的胰岛中,AATK表达降低,通过RNA干扰在INS832/13细胞中选择性沉默AATK可促进β细胞增殖。结果表明,在胰岛素抵抗条件下,miR-338-3p和AATK协同下调,并为该miRNA及其宿主基因在代偿性β细胞质量扩张中的协同作用提供了证据。

相似文献

1
Contribution of Intronic miR-338-3p and Its Hosting Gene AATK to Compensatory β-Cell Mass Expansion.
Mol Endocrinol. 2015 May;29(5):693-702. doi: 10.1210/me.2014-1299. Epub 2015 Mar 9.
2
6
Downregulation of AATK mediates microRNA-558-induced resistance of A549 cells to radiotherapy.
Mol Med Rep. 2016 Sep;14(3):2846-52. doi: 10.3892/mmr.2016.5579. Epub 2016 Aug 1.
7
Compensatory β-cell mass expansion: a big role for a tiny actor.
Cell Cycle. 2013 Jan 15;12(2):197-8. doi: 10.4161/cc.23378. Epub 2012 Jan 15.
8
Circular RNAs as novel regulators of β-cell functions in normal and disease conditions.
Mol Metab. 2018 Mar;9:69-83. doi: 10.1016/j.molmet.2018.01.010. Epub 2018 Jan 31.
9
MicroRNAs contribute to compensatory β cell expansion during pregnancy and obesity.
J Clin Invest. 2012 Oct;122(10):3541-51. doi: 10.1172/JCI64151. Epub 2012 Sep 10.

引用本文的文献

2
Circular RNAs in human diseases.
MedComm (2020). 2024 Sep 4;5(9):e699. doi: 10.1002/mco2.699. eCollection 2024 Sep.
3
Differential Gene Expression in the Penile Cavernosum of Streptozotocin-Induced Diabetic Rats.
Int Neurourol J. 2023 Dec;27(4):234-242. doi: 10.5213/inj.2346074.037. Epub 2023 Dec 31.
4
Circular RNAs in diabetes and its complications: Current knowledge and future prospects.
Front Genet. 2022 Oct 26;13:1006307. doi: 10.3389/fgene.2022.1006307. eCollection 2022.
6
Predicting miRNA targets for hepatocellular carcinoma with an integrated method.
Transl Cancer Res. 2020 Mar;9(3):1752-1760. doi: 10.21037/tcr.2020.02.46.
7
Current treatment options and challenges in patients with Type 1 diabetes: Pharmacological, technical advances and future perspectives.
Rev Endocr Metab Disord. 2021 Jun;22(2):217-240. doi: 10.1007/s11154-021-09635-3. Epub 2021 Mar 23.
8
Role of miRNAs in the pathogenesis of T2DM, insulin secretion, insulin resistance, and β cell dysfunction: the story so far.
J Physiol Biochem. 2020 Nov;76(4):485-502. doi: 10.1007/s13105-020-00760-2. Epub 2020 Aug 4.
10
Non-Coding RNA in Pancreas and β-Cell Development.
Noncoding RNA. 2018 Dec 13;4(4):41. doi: 10.3390/ncrna4040041.

本文引用的文献

1
Role of non-coding RNAs in pancreatic beta-cell development and physiology.
Acta Physiol (Oxf). 2014 Jun;211(2):273-84. doi: 10.1111/apha.12285. Epub 2014 Apr 15.
2
Apoptosis-associated tyrosine kinase 1 inhibits growth and migration and promotes apoptosis in melanoma.
Lab Invest. 2014 Apr;94(4):430-8. doi: 10.1038/labinvest.2014.13. Epub 2014 Mar 3.
3
Epigenetic silencing of miR-338-3p contributes to tumorigenicity in gastric cancer by targeting SSX2IP.
PLoS One. 2013 Jun 24;8(6):e66782. doi: 10.1371/journal.pone.0066782. Print 2013.
4
MicroRNAs contribute to compensatory β cell expansion during pregnancy and obesity.
J Clin Invest. 2012 Oct;122(10):3541-51. doi: 10.1172/JCI64151. Epub 2012 Sep 10.
6
7
Developmental regulation of microRNA expression in Schwann cells.
Mol Cell Biol. 2012 Jan;32(2):558-68. doi: 10.1128/MCB.06270-11. Epub 2011 Nov 7.
8
Diabetes mellitus, a microRNA-related disease?
Transl Res. 2011 Apr;157(4):253-64. doi: 10.1016/j.trsl.2011.01.009. Epub 2011 Feb 4.
10
MicroRNA sponges: progress and possibilities.
RNA. 2010 Nov;16(11):2043-50. doi: 10.1261/rna.2414110. Epub 2010 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验