Suppr超能文献

通过MLL1的昼夜节律去乙酰化作用,NAD(+) - SIRT1对H3K4三甲基化的调控

NAD(+)-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1.

作者信息

Aguilar-Arnal Lorena, Katada Sayako, Orozco-Solis Ricardo, Sassone-Corsi Paolo

机构信息

Center for Epigenetics and Metabolism, U904 INSERM, Department of Biological Chemistry, School of Medicine University of California, Irvine, Irvine, California, USA.

出版信息

Nat Struct Mol Biol. 2015 Apr;22(4):312-8. doi: 10.1038/nsmb.2990. Epub 2015 Mar 9.

Abstract

The circadian clock controls the transcription of hundreds of genes through specific chromatin-remodeling events. The histone methyltransferase mixed-lineage leukemia 1 (MLL1) coordinates recruitment of CLOCK-BMAL1 activator complexes to chromatin, an event associated with cyclic trimethylation of histone H3 Lys4 (H3K4) at circadian promoters. Remarkably, in mouse liver circadian H3K4 trimethylation is modulated by SIRT1, an NAD(+)-dependent deacetylase involved in clock control. We show that mammalian MLL1 is acetylated at two conserved residues, K1130 and K1133. Notably, MLL1 acetylation is cyclic, controlled by the clock and by SIRT1, and it affects the methyltransferase activity of MLL1. Moreover, H3K4 methylation at clock-controlled-gene promoters is influenced by pharmacological or genetic inactivation of SIRT1. Finally, levels of MLL1 acetylation and H3K4 trimethylation at circadian gene promoters depend on NAD(+) circadian levels. These findings reveal a previously unappreciated regulatory pathway between energy metabolism and histone methylation.

摘要

昼夜节律钟通过特定的染色质重塑事件控制数百个基因的转录。组蛋白甲基转移酶混合谱系白血病1(MLL1)协调CLOCK - BMAL1激活复合物与染色质的结合,这一事件与昼夜节律启动子处组蛋白H3赖氨酸4(H3K4)的循环三甲基化相关。值得注意的是,在小鼠肝脏中,昼夜节律性的H3K4三甲基化受SIRT1调节,SIRT1是一种参与时钟控制的NAD⁺依赖性脱乙酰酶。我们发现哺乳动物的MLL1在两个保守残基K1130和K1133处被乙酰化。值得注意的是,MLL1的乙酰化是周期性的,受时钟和SIRT1控制,并且它影响MLL1的甲基转移酶活性。此外,时钟控制基因启动子处的H3K4甲基化受SIRT1的药理学或遗传学失活影响。最后,昼夜节律基因启动子处的MLL1乙酰化水平和H3K4三甲基化水平取决于NAD⁺的昼夜节律水平。这些发现揭示了能量代谢和组蛋白甲基化之间以前未被认识的调节途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc5/4732879/7cd73fb2855c/nihms664249f1.jpg

相似文献

1
NAD(+)-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1.
Nat Struct Mol Biol. 2015 Apr;22(4):312-8. doi: 10.1038/nsmb.2990. Epub 2015 Mar 9.
2
The histone methyltransferase MLL1 permits the oscillation of circadian gene expression.
Nat Struct Mol Biol. 2010 Dec;17(12):1414-21. doi: 10.1038/nsmb.1961. Epub 2010 Nov 28.
3
Methylation gets into rhythm with NAD(+)-SIRT1.
Nat Struct Mol Biol. 2015 Apr;22(4):275-7. doi: 10.1038/nsmb.3004.
4
The time of metabolism: NAD+, SIRT1, and the circadian clock.
Cold Spring Harb Symp Quant Biol. 2011;76:31-8. doi: 10.1101/sqb.2011.76.010520. Epub 2011 Dec 16.
5
Dynamic association of MLL1, H3K4 trimethylation with chromatin and Hox gene expression during the cell cycle.
FEBS J. 2009 Mar;276(6):1629-40. doi: 10.1111/j.1742-4658.2009.06895.x. Epub 2009 Feb 7.
9
The epigenetic language of circadian clocks.
Handb Exp Pharmacol. 2013(217):29-44. doi: 10.1007/978-3-642-25950-0_2.
10
MLL core components give the green light to histone methylation.
ACS Chem Biol. 2006 Sep 19;1(8):495-8. doi: 10.1021/cb600367v.

引用本文的文献

1
Mealtime alters daily rhythm in nuclear O-GlcNAc proteome to regulate hepatic gene expression.
bioRxiv. 2025 Jun 19:2024.06.13.598946. doi: 10.1101/2024.06.13.598946.
3
Histone methylation: at the crossroad between circadian rhythms in transcription and metabolism.
Front Genet. 2024 May 16;15:1343030. doi: 10.3389/fgene.2024.1343030. eCollection 2024.
4
Hypothalamic circuits and aging: keeping the circadian clock updated.
Neural Regen Res. 2024 Sep 1;19(9):1919-1928. doi: 10.4103/1673-5374.389624. Epub 2023 Dec 15.
5
Circadian clock and lipid metabolism disorders: a potential therapeutic strategy for cancer.
Front Endocrinol (Lausanne). 2023 Dec 22;14:1292011. doi: 10.3389/fendo.2023.1292011. eCollection 2023.
6
Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases.
Signal Transduct Target Ther. 2023 Nov 13;8(1):427. doi: 10.1038/s41392-023-01651-w.
7
NAD Metabolism and Immune Regulation: New Approaches to Inflammatory Bowel Disease Therapies.
Antioxidants (Basel). 2023 Jun 7;12(6):1230. doi: 10.3390/antiox12061230.
10
Palmitate impairs circadian transcriptomics in muscle cells through histone modification of enhancers.
Life Sci Alliance. 2022 Oct 27;6(1). doi: 10.26508/lsa.202201598. Print 2023 Jan.

本文引用的文献

1
Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription.
Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):6863-70. doi: 10.1073/pnas.1411264111. Epub 2014 Nov 5.
2
Sirtuins and the circadian clock: bridging chromatin and metabolism.
Sci Signal. 2014 Sep 9;7(342):re6. doi: 10.1126/scisignal.2005685.
3
H3K4me3 breadth is linked to cell identity and transcriptional consistency.
Cell. 2014 Jul 31;158(3):673-88. doi: 10.1016/j.cell.2014.06.027.
4
Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism.
Cell. 2014 Jul 31;158(3):659-72. doi: 10.1016/j.cell.2014.06.050.
5
Circadian clock: linking epigenetics to aging.
Curr Opin Genet Dev. 2014 Jun;26:66-72. doi: 10.1016/j.gde.2014.06.003. Epub 2014 Jul 15.
6
NAD+ and sirtuins in aging and disease.
Trends Cell Biol. 2014 Aug;24(8):464-71. doi: 10.1016/j.tcb.2014.04.002. Epub 2014 Apr 29.
7
CLOCK:BMAL1 is a pioneer-like transcription factor.
Genes Dev. 2014 Jan 1;28(1):8-13. doi: 10.1101/gad.228536.113.
8
SIRT1 and other sirtuins in metabolism.
Trends Endocrinol Metab. 2014 Mar;25(3):138-45. doi: 10.1016/j.tem.2013.12.001. Epub 2013 Dec 30.
10
The nexus of chromatin regulation and intermediary metabolism.
Nature. 2013 Oct 24;502(7472):489-98. doi: 10.1038/nature12752.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验