Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California.
Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California.
Int J Radiat Oncol Biol Phys. 2015 Mar 15;91(4):817-24. doi: 10.1016/j.ijrobp.2014.11.037.
To develop a practical workflow for retrospectively analyzing target and normal tissue dose-volume endpoints for various intensity modulated radiation therapy (IMRT) delivery techniques; to develop technique-specific planning goals to improve plan consistency and quality when feasible.
A total of 165 consecutive head-and-neck patients from our patient registry were selected and retrospectively analyzed. All IMRT plans were generated using the same dose-volume guidelines for TomoTherapy (Tomo, Accuray), TrueBeam (TB, Varian) using fixed-field IMRT (TB_IMRT) or RAPIDARC (TB_RAPIDARC), or Siemens Oncor (Siemens_IMRT, Siemens). A MATLAB-based dose-volume extraction and analysis tool was developed to export dosimetric endpoints for each patient. With a fair stratification of patient cohort, the variation of achieved dosimetric endpoints was analyzed among different treatment techniques. Upon identification of statistically significant variations, technique-specific planning goals were derived from dynamically accumulated institutional data.
Retrospective analysis showed that although all techniques yielded comparable target coverage, the doses to the critical structures differed. The maximum cord doses were 34.1 ± 2.6, 42.7 ± 2.1, 43.3 ± 2.0, and 45.1 ± 1.6 Gy for Tomo, TB_IMRT, TB_RAPIDARC, and Siemens_IMRT plans, respectively. Analyses of variance showed significant differences for the maximum cord doses but no significant differences for other selected structures among the investigated IMRT delivery techniques. Subsequently, a refined technique-specific dose-volume guideline for maximum cord dose was derived at a confidence level of 95%. The dosimetric plans that failed the refined technique-specific planning goals were reoptimized according to the refined constraints. We observed better cord sparing with minimal variations for the target coverage and other organ at risk sparing for the Tomo cases, and higher parotid doses for C-arm linear accelerator-based IMRT and RAPIDARC plans.
Patient registry-based processes allowed easy and systematic dosimetric assessment of treatment plan quality and consistency. Our analysis revealed the dependence of certain dosimetric endpoints on the treatment techniques. Technique-specific refinement of planning goals may lead to improvement in plan consistency and plan quality.
开发一种实用的工作流程,用于回顾性分析各种调强放射治疗(IMRT)传递技术的靶区和正常组织剂量-体积终点;制定特定技术的计划目标,以在可行的情况下提高计划的一致性和质量。
从我们的患者登记处选择了 165 名连续的头颈部患者进行回顾性分析。所有的 IMRT 计划都是使用 TomoTherapy(Tomo,Accuray)、TrueBeam(TB,Varian)的固定野 IMRT(TB_IMRT)或 RAPIDARC(TB_RAPIDARC)或 Siemens Oncor(Siemens_IMRT,Siemens)的相同剂量-体积指南生成的。开发了一个基于 MATLAB 的剂量-体积提取和分析工具,用于为每个患者导出剂量学终点。通过对患者队列进行公平分层,分析了不同治疗技术之间实现的剂量学终点的变化。在确定存在统计学显着差异后,从动态积累的机构数据中得出特定于技术的规划目标。
回顾性分析表明,尽管所有技术都能获得相似的靶区覆盖率,但关键结构的剂量却不同。脊髓的最大剂量分别为 Tomo、TB_IMRT、TB_RAPIDARC 和 Siemens_IMRT 计划的 34.1±2.6、42.7±2.1、43.3±2.0 和 45.1±1.6 Gy。方差分析显示,在所研究的 IMRT 传递技术中,脊髓最大剂量存在显着差异,但其他选定结构之间没有显着差异。随后,在 95%置信水平下,推导出了一个针对脊髓最大剂量的改进的特定于技术的剂量-体积指南。不符合改进的特定于技术的规划目标的剂量学计划根据改进的约束条件重新进行了优化。我们观察到 Tomo 病例的靶区覆盖和其他危及器官的保护更好,脊髓的保护更好,而 C 臂直线加速器的 IMRT 和 RAPIDARC 计划的腮腺剂量更高。
基于患者登记的流程允许对治疗计划质量和一致性进行简单和系统的剂量评估。我们的分析揭示了某些剂量学终点与治疗技术的依赖性。特定于技术的计划目标的细化可能会提高计划的一致性和质量。