Suppr超能文献

非洲爪蟾皮层旋转过程中正极化和微管组装的动力学

The dynamics of plus end polarization and microtubule assembly during Xenopus cortical rotation.

作者信息

Olson David J, Oh Denise, Houston Douglas W

机构信息

The University of Iowa, Department of Biology, 257 BB, Iowa City, IA 52242-1324, USA.

The University of Iowa, Department of Biology, 257 BB, Iowa City, IA 52242-1324, USA.

出版信息

Dev Biol. 2015 May 15;401(2):249-63. doi: 10.1016/j.ydbio.2015.01.028. Epub 2015 Mar 7.

Abstract

The self-organization of dorsally-directed microtubules during cortical rotation in the Xenopus egg is essential for dorsal axis formation. The mechanisms controlling this process have been problematic to analyze, owing to difficulties in visualizing microtubules in living egg. Also, the order of events occurring at the onset of cortical rotation have not been satisfactorily visualized in vivo and have been inferred from staged fixed samples. To address these issues, we have characterized the dynamics of total microtubule and plus end behavior continuously throughout cortical rotation, as well as in oocytes and unfertilized eggs. Here, we show that the nascent microtubule network forms in the cortex but associates with the deep cytoplasm at the start of rotation. Importantly, plus ends remain cortical and become increasingly more numerous and active prior to rotation, with dorsal polarization occurring rapidly after the onset of rotation. Additionally, we show that vegetally localized Trim36 is required to attenuate dynamic plus end growth, suggesting that vegetal factors are needed to locally coordinate growth in the cortex.

摘要

非洲爪蟾卵皮质旋转过程中背向微管的自组织对于背轴形成至关重要。由于难以在活卵中可视化微管,控制这一过程的机制一直难以分析。此外,皮质旋转开始时发生的事件顺序在体内尚未得到令人满意的可视化,而是从分期固定样本中推断出来的。为了解决这些问题,我们在整个皮质旋转过程中,以及在卵母细胞和未受精卵中,持续表征了总微管和正端行为的动态变化。在此,我们表明新生微管网络在皮质中形成,但在旋转开始时与深层细胞质相关联。重要的是,正端在旋转之前保持在皮质中,并且数量越来越多且活性越来越高,旋转开始后背侧极化迅速发生。此外,我们表明植物定位的Trim36是减弱动态正端生长所必需的,这表明植物因子需要在皮质中局部协调生长。

相似文献

1
The dynamics of plus end polarization and microtubule assembly during Xenopus cortical rotation.
Dev Biol. 2015 May 15;401(2):249-63. doi: 10.1016/j.ydbio.2015.01.028. Epub 2015 Mar 7.
2
Maternal Dead-End1 is required for vegetal cortical microtubule assembly during Xenopus axis specification.
Development. 2013 Jun;140(11):2334-44. doi: 10.1242/dev.094748. Epub 2013 Apr 24.
3
Vegetally localized Xenopus trim36 regulates cortical rotation and dorsal axis formation.
Development. 2009 Sep;136(18):3057-65. doi: 10.1242/dev.036855. Epub 2009 Aug 12.
4
Dynamic microtubules at the vegetal cortex predict the embryonic axis in zebrafish.
Development. 2012 Oct;139(19):3644-52. doi: 10.1242/dev.082362.
5
Hecate/Grip2a acts to reorganize the cytoskeleton in the symmetry-breaking event of embryonic axis induction.
PLoS Genet. 2014 Jun 26;10(6):e1004422. doi: 10.1371/journal.pgen.1004422. eCollection 2014 Jun.
6
Complementary roles for dynein and kinesins in the Xenopus egg cortical rotation.
Dev Biol. 2004 Jul 1;271(1):38-48. doi: 10.1016/j.ydbio.2004.03.018.
8
Microtubule-mediated transport of organelles and localization of beta-catenin to the future dorsal side of Xenopus eggs.
Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1224-9. doi: 10.1073/pnas.94.4.1224.
10
Cortical rotation and messenger RNA localization in Xenopus axis formation.
Wiley Interdiscip Rev Dev Biol. 2012 May-Jun;1(3):371-88. doi: 10.1002/wdev.29. Epub 2012 Jan 19.

引用本文的文献

4
Microtubular TRIM36 E3 Ubiquitin Ligase in Embryonic Development and Spermatogenesis.
Cells. 2022 Jan 12;11(2):246. doi: 10.3390/cells11020246.
5
The developmental biology of kinesins.
Dev Biol. 2021 Jan 1;469:26-36. doi: 10.1016/j.ydbio.2020.09.009. Epub 2020 Sep 19.
6
Vertebrate Axial Patterning: From Egg to Asymmetry.
Adv Exp Med Biol. 2017;953:209-306. doi: 10.1007/978-3-319-46095-6_6.
7
Oocyte Polarization Is Coupled to the Chromosomal Bouquet, a Conserved Polarized Nuclear Configuration in Meiosis.
PLoS Biol. 2016 Jan 7;14(1):e1002335. doi: 10.1371/journal.pbio.1002335. eCollection 2016 Jan.
8
The Xenopus Maternal-to-Zygotic Transition from the Perspective of the Germline.
Curr Top Dev Biol. 2015;113:271-303. doi: 10.1016/bs.ctdb.2015.07.021. Epub 2015 Aug 21.

本文引用的文献

2
Hecate/Grip2a acts to reorganize the cytoskeleton in the symmetry-breaking event of embryonic axis induction.
PLoS Genet. 2014 Jun 26;10(6):e1004422. doi: 10.1371/journal.pgen.1004422. eCollection 2014 Jun.
3
Cortical rotation and messenger RNA localization in Xenopus axis formation.
Wiley Interdiscip Rev Dev Biol. 2012 May-Jun;1(3):371-88. doi: 10.1002/wdev.29. Epub 2012 Jan 19.
4
Maternal Dead-End1 is required for vegetal cortical microtubule assembly during Xenopus axis specification.
Development. 2013 Jun;140(11):2334-44. doi: 10.1242/dev.094748. Epub 2013 Apr 24.
6
Dynamic microtubules at the vegetal cortex predict the embryonic axis in zebrafish.
Development. 2012 Oct;139(19):3644-52. doi: 10.1242/dev.082362.
7
Functional analysis of the microtubule-interacting transcriptome.
Mol Biol Cell. 2011 Nov;22(22):4312-23. doi: 10.1091/mbc.E11-07-0629. Epub 2011 Sep 21.
8
Identification and mechanism of regulation of the zebrafish dorsal determinant.
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15876-80. doi: 10.1073/pnas.1106801108. Epub 2011 Sep 12.
9
plusTipTracker: Quantitative image analysis software for the measurement of microtubule dynamics.
J Struct Biol. 2011 Nov;176(2):168-84. doi: 10.1016/j.jsb.2011.07.009. Epub 2011 Jul 29.
10
SLAIN2 links microtubule plus end-tracking proteins and controls microtubule growth in interphase.
J Cell Biol. 2011 Jun 13;193(6):1083-99. doi: 10.1083/jcb.201012179. Epub 2011 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验