Marrari Yannick, Rouvière Christian, Houliston Evelyn
Unité de Biologie du Développement, UMR 7009 CNRS/Université Paris VI, Observatoire Océanologique, 06230 Villefranche sur mer, France.
Dev Biol. 2004 Jul 1;271(1):38-48. doi: 10.1016/j.ydbio.2004.03.018.
Aligned vegetal subcortical microtubules in fertilized Xenopus eggs mediate the "cortical rotation", a translocation of the vegetal cortex and of dorsalizing factors toward the egg equator. Kinesin-related protein (KRP) function is essential for the cortical rotation, and dynein has been implicated indirectly; however, the role of neither microtubule motor protein family is understood. We examined the consequence of inhibiting dynein--dynactin-based transport by microinjection of excess dynamitin beneath the vegetal egg surface. Dynamitin introduced before the cortical rotation prevented formation of the subcortical array, blocking microtubule incorporation from deeper regions. In contrast, dynamitin injected after the microtubule array was fully established did not block cortical translocation, unlike inhibitory-KRP antibodies. During an early phase of cortical rotation, when microtubules showed a distinctive wavy organization, dynamitin disrupted microtubule alignment and perturbed cortical movement. These findings indicate that dynein is required for formation and early maintenance of the vegetal microtubule array, while KRPs are largely responsible for displacing the cortex once the microtubule tracks are established. Consistent with this model for the cortical rotation, photobleach analysis revealed both microtubules that translocated with the vegetal cytoplasm relative to the cortex, and ones that moved with the cortex relative to the cytoplasm.
非洲爪蟾受精卵中排列整齐的植物性皮层下微管介导了“皮层旋转”,即植物性皮层和背化因子向卵赤道的移位。驱动蛋白相关蛋白(KRP)的功能对于皮层旋转至关重要,动力蛋白也被间接牵涉其中;然而,这两个微管运动蛋白家族的作用都尚未明确。我们通过在植物性卵表面下方显微注射过量的发动蛋白来研究抑制基于动力蛋白-动力蛋白激活蛋白的转运的后果。在皮层旋转之前引入发动蛋白会阻止皮层下阵列的形成,从而阻止微管从更深区域的并入。相比之下,在微管阵列完全形成后注射发动蛋白,与抑制KRP的抗体不同,并不会阻止皮层移位。在皮层旋转的早期阶段,当微管呈现出独特的波浪状排列时,发动蛋白会破坏微管的排列并扰乱皮层运动。这些发现表明,动力蛋白对于植物性微管阵列的形成和早期维持是必需的,而一旦微管轨道建立,KRP在很大程度上负责皮层移位。与这种皮层旋转模型一致,光漂白分析揭示了相对于皮层与植物性细胞质一起移位的微管,以及相对于细胞质与皮层一起移动的微管。