Suppr超能文献

数据分析用语言工作台用户界面。

Language workbench user interfaces for data analysis.

机构信息

The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, The Weill Cornell Medical College , New York, NY , United States of America.

出版信息

PeerJ. 2015 Feb 24;3:e800. doi: 10.7717/peerj.800. eCollection 2015.

Abstract

Biological data analysis is frequently performed with command line software. While this practice provides considerable flexibility for computationally savy individuals, such as investigators trained in bioinformatics, this also creates a barrier to the widespread use of data analysis software by investigators trained as biologists and/or clinicians. Workflow systems such as Galaxy and Taverna have been developed to try and provide generic user interfaces that can wrap command line analysis software. These solutions are useful for problems that can be solved with workflows, and that do not require specialized user interfaces. However, some types of analyses can benefit from custom user interfaces. For instance, developing biomarker models from high-throughput data is a type of analysis that can be expressed more succinctly with specialized user interfaces. Here, we show how Language Workbench (LW) technology can be used to model the biomarker development and validation process. We developed a language that models the concepts of Dataset, Endpoint, Feature Selection Method and Classifier. These high-level language concepts map directly to abstractions that analysts who develop biomarker models are familiar with. We found that user interfaces developed in the Meta-Programming System (MPS) LW provide convenient means to configure a biomarker development project, to train models and view the validation statistics. We discuss several advantages of developing user interfaces for data analysis with a LW, including increased interface consistency, portability and extension by language composition. The language developed during this experiment is distributed as an MPS plugin (available at http://campagnelab.org/software/bdval-for-mps/).

摘要

生物数据分析通常使用命令行软件进行。虽然这种做法为受过生物信息学训练的计算能力强的研究人员提供了相当大的灵活性,但也为受过生物学家和/或临床医生培训的研究人员广泛使用数据分析软件设置了障碍。Galaxy 和 Taverna 等工作流系统已经被开发出来,试图提供通用的用户界面,可以封装命令行分析软件。这些解决方案对于可以通过工作流解决且不需要专门用户界面的问题非常有用。但是,某些类型的分析可能会受益于自定义用户界面。例如,从高通量数据中开发生物标志物模型就是一种可以通过专门的用户界面更简洁地表达的分析类型。在这里,我们展示了如何使用 Language Workbench (LW) 技术来建模生物标志物开发和验证过程。我们开发了一种语言,该语言可对 Dataset、Endpoint、Feature Selection Method 和 Classifier 等概念进行建模。这些高级语言概念直接映射到开发生物标志物模型的分析人员所熟悉的抽象概念。我们发现,在 Meta-Programming System (MPS) LW 中开发的用户界面为配置生物标志物开发项目、训练模型和查看验证统计信息提供了便利的方法。我们讨论了使用 LW 为数据分析开发用户界面的几个优点,包括提高接口一致性、可移植性和通过语言组合进行扩展。在这个实验中开发的语言作为 MPS 插件分发(可在 http://campagnelab.org/software/bdval-for-mps/ 获得)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/380b/4349052/b3a31dae4f2a/peerj-03-800-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验