文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

三维基因组结构:参与者和机制。

Three-dimensional genome architecture: players and mechanisms.

机构信息

Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Robert Roessle Strasse, 13125 Berlin-Buch, Germany.

Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.

出版信息

Nat Rev Mol Cell Biol. 2015 Apr;16(4):245-57. doi: 10.1038/nrm3965. Epub 2015 Mar 11.


DOI:10.1038/nrm3965
PMID:25757416
Abstract

The different cell types of an organism share the same DNA, but during cell differentiation their genomes undergo diverse structural and organizational changes that affect gene expression and other cellular functions. These can range from large-scale folding of whole chromosomes or of smaller genomic regions, to the re-organization of local interactions between enhancers and promoters, mediated by the binding of transcription factors and chromatin looping. The higher-order organization of chromatin is also influenced by the specificity of the contacts that it makes with nuclear structures such as the lamina. Sophisticated methods for mapping chromatin contacts are generating genome-wide data that provide deep insights into the formation of chromatin interactions, and into their roles in the organization and function of the eukaryotic cell nucleus.

摘要

生物体的不同细胞类型共享相同的 DNA,但在细胞分化过程中,它们的基因组会经历多种结构和组织上的变化,从而影响基因表达和其他细胞功能。这些变化范围从整个染色体或较小基因组区域的大规模折叠,到增强子和启动子之间局部相互作用的重新组织,这是由转录因子和染色质环介导的。染色质的高级组织也受到它与核结构(如核纤层)的特异性接触的影响。用于绘制染色质接触的复杂方法正在生成全基因组数据,这些数据深入了解了染色质相互作用的形成及其在真核细胞核的组织和功能中的作用。

相似文献

[1]
Three-dimensional genome architecture: players and mechanisms.

Nat Rev Mol Cell Biol. 2015-3-11

[2]
Chromatin folding--from biology to polymer models and back.

J Cell Sci. 2011-3-15

[3]
Structural-Functional Domains of the Eukaryotic Genome.

Biochemistry (Mosc). 2018-4

[4]
Three-dimensional genome organization in interphase and its relation to genome function.

Semin Cell Dev Biol. 2007-10

[5]
Topological domains in mammalian genomes identified by analysis of chromatin interactions.

Nature. 2012-4-11

[6]
Chromatin folding: from linear chromosomes to the 4D nucleus.

Cold Spring Harb Symp Quant Biol. 2010

[7]
Chromatin globules: a common motif of higher order chromosome structure?

Curr Opin Cell Biol. 2011-4-12

[8]
Computational approaches from polymer physics to investigate chromatin folding.

Curr Opin Cell Biol. 2020-6

[9]
A (3D-Nuclear) Space Odyssey: Making Sense of Hi-C Maps.

Genes (Basel). 2019-5-29

[10]
Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation.

Mol Syst Biol. 2015-12-23

引用本文的文献

[1]
Modelling transcriptional silencing and its coupling to 3D genome organisation.

Soft Matter. 2025-8-22

[2]
VADEr: Vision Transformer-Inspired Framework for Polygenic Risk Reveals Underlying Genetic Heterogeneity in Prostate Cancer.

medRxiv. 2025-5-18

[3]
Genome reorganization and its functional impact during breast cancer progression.

bioRxiv. 2025-5-17

[4]
Landscape of the Epstein-Barr virus-host chromatin interactome and gene regulation.

EMBO J. 2025-5-27

[5]
Deciphering the role of RNA in regulating CTCF's DNA binding affinity in leukemia cells.

Genome Biol. 2025-5-12

[6]
Using LDpred2 to adapt polygenic risk score techniques for methylation score creation.

BMC Res Notes. 2025-4-23

[7]
Polymer model integrates imaging and sequencing to reveal how nanoscale heterochromatin domains influence gene expression.

Nat Commun. 2025-4-23

[8]
Skin regional specification and higher-order regulation.

Sci Adv. 2025-3-21

[9]
Roles for the 3D genome in the cell cycle, DNA replication, and double strand break repair.

Front Cell Dev Biol. 2025-2-27

[10]
Unraveling the three-dimensional genome structure using machine learning.

BMB Rep. 2025-5

本文引用的文献

[1]
Targeted Chromatin Capture (T2C): a novel high resolution high throughput method to detect genomic interactions and regulatory elements.

Epigenetics Chromatin. 2014-6-16

[2]
Insulator function and topological domain border strength scale with architectural protein occupancy.

Genome Biol. 2014-6-30

[3]
Models of chromosome structure.

Curr Opin Cell Biol. 2014-5-4

[4]
Mechanisms and dynamics of nuclear lamina-genome interactions.

Curr Opin Cell Biol. 2014-3-30

[5]
Nucleolus and nuclear periphery: velcro for heterochromatin.

Curr Opin Cell Biol. 2014-3-29

[6]
An atlas of active enhancers across human cell types and tissues.

Nature. 2014-3-27

[7]
CTCF: an architectural protein bridging genome topology and function.

Nat Rev Genet. 2014-3-11

[8]
CRISPR-based technologies: prokaryotic defense weapons repurposed.

Trends Genet. 2014-3

[9]
Large-scale chromatin organization: the good, the surprising, and the still perplexing.

Curr Opin Cell Biol. 2013-11-13

[10]
Lessons from senescence: chromatin maintenance in non-proliferating cells.

Biochim Biophys Acta. 2013

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索