Duncan C, Perret L, Palomba S, Lapine M, Kuhlmey B T, de Sterke C Martijn
Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, NSW 2006, Australia.
Institute of Photonics and Optical Science (IPOS), University of Sydney, NSW 2006, Australia.
Sci Rep. 2015 Mar 11;5:8983. doi: 10.1038/srep08983.
Nonlinear optical processes, which are of paramount importance in science and technology, involve the generation of new frequencies. This requires phase matching to avoid that light generated at different positions interferes destructively. Of the two original approaches to achieve this, one relies on birefringence in optical crystals, and is therefore limited by the dispersion of naturally occurring materials, whereas the other, quasi-phase-matching, requires direct modulation of material properties, which is not universally possible. To overcome these limitations, we propose to exploit the unique dispersion afforded by hyperbolic metamaterials, where the refractive index can be arbitrarily large. We systematically analyse the ensuing opportunities and demonstrate that hyperbolic phase matching can be achieved with a wide range of material parameters, offering access to the use of nonlinear media for which phase matching cannot be achieved by other means. With the rapid development in the fabrication of hyperbolic metamaterials, our approach is destined to bring significant advantages over conventional techniques for the phase matching of a variety of nonlinear processes.
非线性光学过程在科学和技术中至关重要,它涉及新频率的产生。这需要相位匹配以避免在不同位置产生的光发生相消干涉。在实现这一点的两种原始方法中,一种依赖于光学晶体中的双折射,因此受到天然材料色散的限制,而另一种,即准相位匹配,需要直接调制材料特性,这并非普遍可行。为了克服这些限制,我们提议利用双曲线超材料所提供的独特色散,其折射率可以任意大。我们系统地分析了随之而来的机遇,并证明可以通过广泛的材料参数实现双曲线相位匹配,从而能够使用其他方法无法实现相位匹配的非线性介质。随着双曲线超材料制造技术的迅速发展,我们的方法注定会在各种非线性过程的相位匹配方面比传统技术带来显著优势。