Suppr超能文献

从线性响应预测超材料的非线性特性。

Predicting nonlinear properties of metamaterials from the linear response.

机构信息

NSF Nanoscale Science and Engineering Center (NSEC), University of California, Berkeley 3112 Etcheverry Hall, UC Berkeley, California 94720, USA.

1] NSF Nanoscale Science and Engineering Center (NSEC), University of California, Berkeley 3112 Etcheverry Hall, UC Berkeley, California 94720, USA [2] Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA.

出版信息

Nat Mater. 2015 Apr;14(4):379-83. doi: 10.1038/nmat4214. Epub 2015 Feb 9.

Abstract

The discovery of optical second harmonic generation in 1961 started modern nonlinear optics. Soon after, R. C. Miller found empirically that the nonlinear susceptibility could be predicted from the linear susceptibilities. This important relation, known as Miller's Rule, allows a rapid determination of nonlinear susceptibilities from linear properties. In recent years, metamaterials, artificial materials that exhibit intriguing linear optical properties not found in natural materials, have shown novel nonlinear properties such as phase-mismatch-free nonlinear generation, new quasi-phase matching capabilities and large nonlinear susceptibilities. However, the understanding of nonlinear metamaterials is still in its infancy, with no general conclusion on the relationship between linear and nonlinear properties. The key question is then whether one can determine the nonlinear behaviour of these artificial materials from their exotic linear behaviour. Here, we show that the nonlinear oscillator model does not apply in general to nonlinear metamaterials. We show, instead, that it is possible to predict the relative nonlinear susceptibility of large classes of metamaterials using a more comprehensive nonlinear scattering theory, which allows efficient design of metamaterials with strong nonlinearity for important applications such as coherent Raman sensing, entangled photon generation and frequency conversion.

摘要

1961 年,人们发现了光的二次谐波产生现象,这标志着现代非线性光学的诞生。此后不久,R.C.米勒通过经验发现,非线性极化率可以根据线性极化率来预测。这一重要关系被称为米勒定则,它允许从线性特性快速确定非线性极化率。近年来,超材料(具有自然界材料所不具备的奇异线性光学特性的人工材料)表现出了新颖的非线性特性,如无相位失配的非线性产生、新的准相位匹配能力和大的非线性极化率。然而,对非线性超材料的理解仍处于起步阶段,对于线性和非线性性质之间的关系尚无定论。关键问题是,是否可以从这些人工材料奇异的线性性质来确定它们的非线性行为。在这里,我们表明,非线性振荡器模型通常不适用于非线性超材料。相反,我们证明,使用更全面的非线性散射理论,可以预测大量超材料的相对非线性极化率,这使得能够设计出具有强非线性的超材料,从而实现重要应用,如相干拉曼感应、纠缠光子产生和频率转换。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验