Suppr超能文献

如何控制自我消化:自噬的转录、转录后和翻译后调控

How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy.

作者信息

Feng Yuchen, Yao Zhiyuan, Klionsky Daniel J

机构信息

Life Sciences Institute and the Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.

Life Sciences Institute and the Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.

出版信息

Trends Cell Biol. 2015 Jun;25(6):354-63. doi: 10.1016/j.tcb.2015.02.002. Epub 2015 Mar 8.

Abstract

Macroautophagy (hereafter autophagy), literally defined as a type of self-eating, is a dynamic cellular process in which cytoplasm is sequestered within a unique compartment termed the phagophore. Upon completion, the phagophore matures into a double-membrane autophagosome that fuses with the lysosome or vacuole, allowing degradation of the cargo. Nonselective autophagy is primarily a cytoprotective response to various types of stress; however, the process can also be highly selective. Autophagy is involved in various aspects of cell physiology, and its dysregulation is associated with a range of diseases. The regulation of autophagy is complex, and the process must be properly modulated to maintain cellular homeostasis. In this review, we focus on the current state of knowledge concerning transcriptional, post-transcriptional, and post-translational regulation of autophagy in yeast and mammals.

摘要

巨自噬(以下简称自噬),字面意思是一种自我吞噬,是一种动态的细胞过程,其中细胞质被隔离在一个称为吞噬泡的独特隔室内。完成后,吞噬泡成熟为双膜自噬体,与溶酶体或液泡融合,从而使货物降解。非选择性自噬主要是对各种类型应激的细胞保护反应;然而,这个过程也可以是高度选择性的。自噬涉及细胞生理学的各个方面,其失调与一系列疾病相关。自噬的调节很复杂,必须对该过程进行适当调节以维持细胞内稳态。在这篇综述中,我们重点关注酵母和哺乳动物中自噬的转录、转录后和翻译后调控的当前知识状态。

相似文献

1
How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy.
Trends Cell Biol. 2015 Jun;25(6):354-63. doi: 10.1016/j.tcb.2015.02.002. Epub 2015 Mar 8.
2
Atg41/Icy2 regulates autophagosome formation.
Autophagy. 2015;11(12):2288-99. doi: 10.1080/15548627.2015.1107692.
3
The machinery of macroautophagy.
Cell Res. 2014 Jan;24(1):24-41. doi: 10.1038/cr.2013.168. Epub 2013 Dec 24.
4
An overview of macroautophagy in yeast.
J Mol Biol. 2016 May 8;428(9 Pt A):1681-99. doi: 10.1016/j.jmb.2016.02.021. Epub 2016 Feb 22.
5
Phagophore-lysosome/vacuole fusion in mutant yeast and mammalian cells.
Autophagy. 2023 Sep;19(9):2595-2600. doi: 10.1080/15548627.2023.2205272. Epub 2023 Apr 28.
6
The Atg17-Atg31-Atg29 complex and Atg11 regulate autophagosome-vacuole fusion.
Autophagy. 2016 May 3;12(5):894-5. doi: 10.1080/15548627.2016.1162364.
7
The Atg17-Atg31-Atg29 Complex Coordinates with Atg11 to Recruit the Vam7 SNARE and Mediate Autophagosome-Vacuole Fusion.
Curr Biol. 2016 Jan 25;26(2):150-160. doi: 10.1016/j.cub.2015.11.054. Epub 2016 Jan 7.
8
The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression.
Methods. 2015 Mar;75:3-12. doi: 10.1016/j.ymeth.2014.12.008. Epub 2014 Dec 16.
9
Reconstruction of destruction - reconstitution methods in autophagy research.
J Cell Sci. 2018 Oct 31;132(4):jcs223792. doi: 10.1242/jcs.223792.
10
Toward an understanding of autophagosome-lysosome fusion: The unsuspected role of ATG14.
Autophagy. 2015 Apr 3;11(4):583-4. doi: 10.1080/15548627.2015.1029220.

引用本文的文献

1
Molecular mechanisms of autophagy and implications in liver diseases.
Liver Res. 2023 Feb 19;7(1):56-70. doi: 10.1016/j.livres.2023.02.002. eCollection 2023 Mar.
3
Cellular stress increases DRIP production and MHC Class I antigen presentation.
Front Immunol. 2024 Aug 23;15:1445338. doi: 10.3389/fimmu.2024.1445338. eCollection 2024.
6
Chasing Graphene-Based Anticancer Drugs: Where are We Now on the Biomedical Graphene Roadmap?
Int J Nanomedicine. 2024 May 2;19:3973-3989. doi: 10.2147/IJN.S447397. eCollection 2024.
7
Mitochondria-associated endoplasmic reticulum membranes as a therapeutic target for cardiovascular diseases.
Front Pharmacol. 2024 Apr 17;15:1398381. doi: 10.3389/fphar.2024.1398381. eCollection 2024.
8
extracellular vesicles aggravate alveolar epithelial barrier disruption via autophagic degradation of OCLN (occludin).
Autophagy. 2024 Jul;20(7):1577-1596. doi: 10.1080/15548627.2024.2330043. Epub 2024 Apr 21.

本文引用的文献

1
Phosphorylation of LC3 by the Hippo kinases STK3/STK4 is essential for autophagy.
Mol Cell. 2015 Jan 8;57(1):55-68. doi: 10.1016/j.molcel.2014.11.019. Epub 2014 Dec 24.
2
TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition.
Dev Cell. 2014 Aug 25;30(4):394-409. doi: 10.1016/j.devcel.2014.06.013. Epub 2014 Aug 7.
3
Transcriptional regulation by Pho23 modulates the frequency of autophagosome formation.
Curr Biol. 2014 Jun 16;24(12):1314-1322. doi: 10.1016/j.cub.2014.04.048. Epub 2014 May 29.
4
A histone point mutation that switches on autophagy.
Autophagy. 2014 Jun;10(6):1143-5. doi: 10.4161/auto.28767.
6
Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase.
Mol Cell. 2014 Feb 6;53(3):471-83. doi: 10.1016/j.molcel.2013.12.011. Epub 2014 Jan 16.
7
Self-consumption: the interplay of autophagy and apoptosis.
Nat Rev Mol Cell Biol. 2014 Feb;15(2):81-94. doi: 10.1038/nrm3735. Epub 2014 Jan 8.
8
The machinery of macroautophagy.
Cell Res. 2014 Jan;24(1):24-41. doi: 10.1038/cr.2013.168. Epub 2013 Dec 24.
9
The return of the nucleus: transcriptional and epigenetic control of autophagy.
Nat Rev Mol Cell Biol. 2014 Jan;15(1):65-74. doi: 10.1038/nrm3716. Epub 2013 Dec 11.
10
Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2.
Nat Med. 2013 Nov;19(11):1478-88. doi: 10.1038/nm.3322. Epub 2013 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验