Liu Rong-Jian, Ota Kristie T, Dutheil Sophie, Duman Ronald S, Aghajanian George K
Laboratory of Molecular Psychiatry, Department of Psychiatry, Connecticut Mental Health Center, Yale University School of Medicine, New Haven CT, USA.
Neuropsychopharmacology. 2015 Aug;40(9):2066-75. doi: 10.1038/npp.2015.70. Epub 2015 Mar 11.
A single sub-anesthetic dose of ketamine, a short-acting NMDA receptor blocker, induces a rapid and prolonged antidepressant effect in treatment-resistant major depression. In animal models, ketamine (24 h) reverses depression-like behaviors and associated deficits in excitatory postsynaptic currents (EPSCs) generated in apical dendritic spines of layer V pyramidal cells of medial prefrontal cortex (mPFC). However, little is known about the effects of ketamine on basal dendrites. The basal dendrites of layer V cells receive an excitatory input from pyramidal cells of the basolateral amygdala (BLA), neurons that are activated by the stress hormone CRF. Here we found that CRF induces EPSCs in PFC layer V cells and that ketamine enhanced this effect through the mammalian target of rapamycin complex 1 synaptogenic pathway; the CRF-induced EPSCs required an intact BLA input and were generated primarily in basal dendrites. In contrast to its detrimental effects on apical dendritic structure and function, chronic stress did not induce a loss of CRF-induced EPSCs in basal dendrites, thereby creating a relative imbalance in favor of amygdala inputs. The effects of ketamine were complex: ketamine enhanced apical EPSC responses in all mPFC subregions, anterior cingulate (AC), prelimbic (PL), and infralimbic (IL) but enhanced CRF-induced EPSCs only in AC and PL-responses were unchanged in IL, a critical area for suppression of stress responses. We propose that by restoring the strength of apical inputs relative to basal amygdala inputs, especially in IL, ketamine would ameliorate the hypothesized disproportional negative influence of the amygdala in chronic stress and major depression.
单次亚麻醉剂量的氯胺酮(一种短效N-甲基-D-天冬氨酸受体阻滞剂)可在难治性重度抑郁症中诱导快速且持久的抗抑郁作用。在动物模型中,氯胺酮(24小时)可逆转抑郁样行为以及内侧前额叶皮质(mPFC)第V层锥体细胞顶端树突棘中产生的兴奋性突触后电流(EPSCs)相关缺陷。然而,关于氯胺酮对基底树突的影响知之甚少。第V层细胞的基底树突接受来自基底外侧杏仁核(BLA)锥体细胞的兴奋性输入,而这些神经元会被应激激素促肾上腺皮质激素释放因子(CRF)激活。我们发现CRF可诱导PFC第V层细胞产生EPSCs,且氯胺酮通过雷帕霉素复合物1的哺乳动物靶点突触生成途径增强了这种效应;CRF诱导的EPSCs需要完整的BLA输入,且主要在基底树突中产生。与对顶端树突结构和功能的有害影响相反,慢性应激并未导致基底树突中CRF诱导的EPSCs丧失,从而造成有利于杏仁核输入的相对失衡。氯胺酮的作用较为复杂:氯胺酮增强了所有mPFC亚区域(前扣带回(AC)、前边缘区(PL)和边缘下区(IL))的顶端EPSC反应,但仅增强了AC和PL中CRF诱导的EPSCs,而IL中的反应未改变,IL是抑制应激反应的关键区域。我们提出,通过恢复顶端输入相对于基底杏仁核输入的强度,尤其是在IL中,氯胺酮将改善杏仁核在慢性应激和重度抑郁症中假设的不成比例的负面影响。