Besson Marie Thérèse, Alegría Karin, Garrido-Gerter Pamela, Barros Luis Felipe, Liévens Jean-Charles
Aix-Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille cedex 15, Marseille, France.
Centro de Estudios Científicos, Arturo Prat 514, Valdivia, Chile.
PLoS One. 2015 Mar 11;10(3):e0118765. doi: 10.1371/journal.pone.0118765. eCollection 2015.
Huntington's disease is a neurodegenerative disorder caused by toxic insertions of polyglutamine residues in the Huntingtin protein and characterized by progressive deterioration of cognitive and motor functions. Altered brain glucose metabolism has long been suggested and a possible link has been proposed in HD. However, the precise function of glucose transporters was not yet determined. Here, we report the effects of the specifically-neuronal human glucose transporter expression in neurons of a Drosophila model carrying the exon 1 of the human huntingtin gene with 93 glutamine repeats (HQ93). We demonstrated that overexpression of the human glucose transporter in neurons ameliorated significantly the status of HD flies by increasing their lifespan, reducing their locomotor deficits and rescuing eye neurodegeneration. Then, we investigated whether increasing the major pathways of glucose catabolism, glycolysis and pentose-phosphate pathway (PPP) impacts HD. To mimic increased glycolytic flux, we overexpressed phosphofructokinase (PFK) which catalyzes an irreversible step in glycolysis. Overexpression of PFK did not affect HQ93 fly survival, but protected from photoreceptor loss. Overexpression of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the PPP, extended significantly the lifespan of HD flies and rescued eye neurodegeneration. Since G6PD is able to synthesize NADPH involved in cell survival by maintenance of the redox state, we showed that tolerance to experimental oxidative stress was enhanced in flies co-expressing HQ93 and G6PD. Additionally overexpressions of hGluT3, G6PD or PFK were able to circumvent mitochondrial deficits induced by specific silencing of genes necessary for mitochondrial homeostasis. Our study confirms the involvement of bioenergetic deficits in HD course; they can be rescued by specific expression of a glucose transporter in neurons. Finally, the PPP and, to a lesser extent, the glycolysis seem to mediate the hGluT3 protective effects, whereas, in addition, the PPP provides increased protection to oxidative stress.
亨廷顿舞蹈症是一种神经退行性疾病,由亨廷顿蛋白中多聚谷氨酰胺残基的毒性插入引起,其特征是认知和运动功能逐渐衰退。长期以来,人们一直认为大脑葡萄糖代谢发生了改变,并提出了其与亨廷顿舞蹈症可能存在的联系。然而,葡萄糖转运蛋白的确切功能尚未确定。在此,我们报告了在携带含93个谷氨酰胺重复序列(HQ93)的人类亨廷顿基因外显子1的果蝇模型神经元中特异性神经元人类葡萄糖转运蛋白表达的影响。我们证明,神经元中人类葡萄糖转运蛋白的过表达通过延长其寿命、减少其运动缺陷和挽救眼部神经退行性变,显著改善了亨廷顿舞蹈症果蝇的状态。然后,我们研究了增加葡萄糖分解代谢的主要途径,即糖酵解和磷酸戊糖途径(PPP)是否会影响亨廷顿舞蹈症。为了模拟糖酵解通量增加,我们过表达了催化糖酵解中不可逆步骤的磷酸果糖激酶(PFK)。PFK的过表达不影响HQ93果蝇的存活,但能防止光感受器丧失。PPP的关键酶葡萄糖-6-磷酸脱氢酶(G6PD)的过表达显著延长了亨廷顿舞蹈症果蝇的寿命,并挽救了眼部神经退行性变。由于G6PD能够通过维持氧化还原状态合成参与细胞存活的NADPH,我们表明在共表达HQ93和G6PD的果蝇中,对实验性氧化应激的耐受性增强。此外,hGluT3、G6PD或PFK的过表达能够规避由线粒体稳态所需基因的特异性沉默诱导的线粒体缺陷。我们的研究证实了生物能量缺陷在亨廷顿舞蹈症病程中的作用;它们可以通过神经元中葡萄糖转运蛋白的特异性表达来挽救。最后,PPP以及在较小程度上糖酵解似乎介导了hGluT3的保护作用,而此外,PPP还提供了对氧化应激的增强保护。