Silva José Rogério A, Bishai William R, Govender Thavendran, Lamichhane Gyanu, Maguire Glenn E M, Kruger Hendrik G, Lameira Jeronimo, Alves Cláudio N
a Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais , Universidade Federal do Pará , CP 11101, Belém , PA 66075-110 , Brazil.
b Department of Medicine, Division of Infectious Diseases , Johns Hopkins University School of Medicine , Baltimore , MD 21205 , USA.
J Biomol Struct Dyn. 2016;34(2):304-17. doi: 10.1080/07391102.2015.1029000. Epub 2015 Jul 24.
The single crystal X-ray structure of the extracellular portion of the L,D-transpeptidase (ex-LdtMt2 - residues 120-408) enzyme was recently reported. It was observed that imipenem and meropenem inhibit activity of this enzyme, responsible for generating L,D-transpeptide linkages in the peptidoglycan layer of Mycobacterium tuberculosis. Imipenem is more active and isothermal titration calorimetry experiments revealed that meropenem is subjected to an entropy penalty upon binding to the enzyme. Herein, we report a molecular modeling approach to obtain a molecular view of the inhibitor/enzyme interactions. The average binding free energies for nine commercially available inhibitors were calculated using MM/GBSA and Solvation Interaction Energy (SIE) approaches and the calculated energies corresponded well with the available experimentally observed results. The method reproduces the same order of binding energies as experimentally observed for imipenem and meropenem. We have also demonstrated that SIE is a reasonably accurate and cost-effective free energy method, which can be used to predict carbapenem affinities for this enzyme. A theoretical explanation was offered for the experimental entropy penalty observed for meropenem, creating optimism that this computational model can serve as a potential computational model for other researchers in the field.
最近报道了L,D-转肽酶细胞外部分(ex-LdtMt2 - 残基120 - 408)的单晶X射线结构。据观察,亚胺培南和美罗培南可抑制该酶的活性,该酶负责在结核分枝杆菌的肽聚糖层中生成L,D-转肽键。亚胺培南活性更强,等温滴定量热法实验表明,美罗培南与该酶结合时会受到熵罚。在此,我们报告一种分子建模方法,以获得抑制剂/酶相互作用的分子视图。使用MM/GBSA和溶剂化相互作用能(SIE)方法计算了九种市售抑制剂的平均结合自由能,计算出的能量与现有的实验观察结果吻合良好。该方法再现了与亚胺培南和美罗培南实验观察到的相同结合能顺序。我们还证明,SIE是一种相当准确且具有成本效益的自由能方法,可用于预测碳青霉烯类药物对该酶的亲和力。针对美罗培南观察到的实验熵罚给出了理论解释,这让人们乐观地认为该计算模型可为该领域的其他研究人员提供一个潜在的计算模型。