Kumar Pankaj, Kaushik Amit, Lloyd Evan P, Li Shao-Gang, Mattoo Rohini, Ammerman Nicole C, Bell Drew T, Perryman Alexander L, Zandi Trevor A, Ekins Sean, Ginell Stephan L, Townsend Craig A, Freundlich Joel S, Lamichhane Gyanu
Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA.
Nat Chem Biol. 2017 Jan;13(1):54-61. doi: 10.1038/nchembio.2237. Epub 2016 Nov 7.
Bacterial survival requires an intact peptidoglycan layer, a three-dimensional exoskeleton that encapsulates the cytoplasmic membrane. Historically, the final steps of peptidoglycan synthesis are known to be carried out by D,D-transpeptidases, enzymes that are inhibited by the β-lactams, which constitute >50% of all antibacterials in clinical use. Here, we show that the carbapenem subclass of β-lactams are distinctly effective not only because they inhibit D,D-transpeptidases and are poor substrates for β-lactamases, but primarily because they also inhibit non-classical transpeptidases, namely the L,D-transpeptidases, which generate the majority of linkages in the peptidoglycan of mycobacteria. We have characterized the molecular mechanisms responsible for inhibition of L,D-transpeptidases of Mycobacterium tuberculosis and a range of bacteria including ESKAPE pathogens, and used this information to design, synthesize and test simplified carbapenems with potent antibacterial activity.
细菌的存活需要完整的肽聚糖层,这是一种包裹细胞质膜的三维外骨骼。从历史上看,已知肽聚糖合成的最后步骤由D,D-转肽酶执行,这些酶会被β-内酰胺类药物抑制,而β-内酰胺类药物占临床使用的所有抗菌药物的50%以上。在这里,我们表明β-内酰胺类药物的碳青霉烯亚类具有显著的效果,这不仅是因为它们抑制D,D-转肽酶且是β-内酰胺酶的不良底物,而且主要是因为它们还抑制非经典转肽酶,即L,D-转肽酶,这些酶在分枝杆菌的肽聚糖中形成了大部分连接。我们已经表征了负责抑制结核分枝杆菌以及包括ESKAPE病原体在内的一系列细菌的L,D-转肽酶的分子机制,并利用这些信息设计、合成和测试了具有强大抗菌活性的简化碳青霉烯类药物。