Suppr超能文献

自动神经黑素成像作为帕金森病的诊断生物标志物

Automated neuromelanin imaging as a diagnostic biomarker for Parkinson's disease.

作者信息

Castellanos Gabriel, Fernández-Seara María A, Lorenzo-Betancor Oswaldo, Ortega-Cubero Sara, Puigvert Marc, Uranga Javier, Vidorreta Marta, Irigoyen Jaione, Lorenzo Elena, Muñoz-Barrutia Arrate, Ortiz-de-Solorzano Carlos, Pastor Pau, Pastor María A

机构信息

Neuroimaging Laboratory, University of Navarra, Pamplona, Spain.

CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.

出版信息

Mov Disord. 2015 Jun;30(7):945-52. doi: 10.1002/mds.26201. Epub 2015 Mar 15.

Abstract

BACKGROUND

We aimed to analyze the diagnostic accuracy of an automated segmentation and quantification method of the SNc and locus coeruleus (LC) volumes based on neuromelanin (NM)-sensitive MRI (NM-MRI) in patients with idiopathic (iPD) and monogenic (iPD) Parkinson's disease (PD).

METHODS

Thirty-six patients (23 idiopathic and 13 monogenic PARKIN or LRRK2 mutations) and 37 age-matched healthy controls underwent 3T-NM-MRI. SNc and LC volumetry were performed using fully automated multi-image atlas segmentation. The diagnostic performance to differentiate PD from controls was measured using the area under the curve (AUC) and likelihood ratios based on receiver operating characteristic (ROC) analyses.

RESULTS

We found a significant reduction of SNc and LC volumes in patients, when compared to controls. ROC analysis showed better diagnostic accuracy when using SNc volume than LC volume. Significant differences between ipsilateral and contralateral SNc volumes, in relation to the more clinically affected side, were found in patients with iPD (P = 0.007). Contralateral atrophy in the SNc showed the highest power to discriminate PD subjects from controls (AUC, 0.93-0.94; sensitivity, 91%-92%; specificity, 89%; positive likelihood ratio: 8.4-8.5; negative likelihood ratio: 0.09-0.1 at a single cut-off point). Interval likelihood ratios for contralateral SNc volume improved the diagnostic accuracy of volumetric measurements.

CONCLUSION

SNc and LC volumetry based on NM-MRI resulting from the automated segmentation and quantification technique can yield high diagnostic accuracy for differentiating PD from health and might be an unbiased disease biomarker. © 2015 International Parkinson and Movement Disorder Society.

摘要

背景

我们旨在分析基于神经黑色素(NM)敏感磁共振成像(NM-MRI)的黑质致密部(SNc)和蓝斑(LC)体积自动分割与定量方法对特发性帕金森病(iPD)和单基因帕金森病(PD)患者的诊断准确性。

方法

36例患者(23例特发性患者以及13例携带PARKIN或LRRK2单基因突变的患者)和37例年龄匹配的健康对照者接受了3T-NM-MRI检查。使用全自动多图像图谱分割法进行SNc和LC体积测量。基于受试者工作特征(ROC)分析,通过曲线下面积(AUC)和似然比来衡量区分PD患者与对照者的诊断性能。

结果

与对照者相比,我们发现患者的SNc和LC体积显著减小。ROC分析显示,使用SNc体积时的诊断准确性优于使用LC体积时。在iPD患者中,发现与临床症状更严重一侧相关的同侧和对侧SNc体积存在显著差异(P = 0.007)。SNc的对侧萎缩在区分PD患者与对照者方面具有最高的效能(AUC为0.93 - 0.94;敏感性为91% - 92%;特异性为89%;阳性似然比为8.4 - 8.5;在单个临界点时阴性似然比为0.09 - 0.1)。对侧SNc体积的区间似然比提高了体积测量的诊断准确性。

结论

基于自动分割与定量技术的NM-MRI进行的SNc和LC体积测量在区分PD患者与健康人方面可产生较高的诊断准确性,可能是一种无偏倚的疾病生物标志物。© 2015国际帕金森病和运动障碍协会

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验