Suppr超能文献

在细胞内细菌感染期间,大网膜是保护性IgM产生的部位。

The omentum is a site of protective IgM production during intracellular bacterial infection.

作者信息

Jones Derek D, Racine Rachael, Wittmer Susan T, Harston Louise, Papillion Amber M, Dishaw Lisa M, Randall Troy D, Woodland David L, Winslow Gary M

机构信息

Department of Biomedical Sciences, University at Albany, Albany, New York, USA.

Wadsworth Center, New York State Department of Health, Albany, New York, USA.

出版信息

Infect Immun. 2015 May;83(5):2139-47. doi: 10.1128/IAI.00295-15. Epub 2015 Mar 16.

Abstract

Infection of mice with the bacterium Ehrlichia muris elicits a protective T cell-independent (TI) IgM response mediated primarily by a population of CD11c-expressing plasmablasts in the spleen. Although splenic marginal zone (MZ) B cells are considered to be important for TI responses to blood-borne pathogens, MZ B cells were not responsible for generating plasmablasts in response to Ehrlichia muris. Moreover, antigen-specific serum IgM was decreased only modestly in splenectomized mice and in mice that lacked spleen, lymph nodes, and Peyer's patches (SLP mice). Both splenectomized and SLP mice were protected against lethal ehrlichial challenge infection. Moreover, we found a high frequency of Ehrlichia-specific plasmablasts in the omentum of both conventional and SLP mice. Omental plasmablasts elicited during Ehrlichia infection lacked expression of CD138 but expressed CD11c in a manner similar to that of their splenic counterparts. Selective ablation of CD11c-expressing B cells nearly eliminated the omental Ehrlichia-specific plasmablasts and reduced antigen-specific serum IgM, identifying the omental B cells as a source of IgM production in the SLP mice. Generation of the omental plasmablasts was route dependent, as they were detected following peritoneal infection but not following intravenous infection. Our data identify the omentum as an important auxiliary site of IgM production during intracellular bacterial infection.

摘要

用鼠埃立克体感染小鼠会引发一种不依赖T细胞的(TI)保护性IgM反应,主要由脾脏中一群表达CD11c的浆母细胞介导。尽管脾边缘区(MZ)B细胞被认为对血源性病原体的TI反应很重要,但MZ B细胞并不负责对鼠埃立克体产生浆母细胞。此外,在脾切除小鼠以及缺乏脾脏、淋巴结和派尔集合淋巴结的小鼠(SLP小鼠)中,抗原特异性血清IgM仅适度降低。脾切除小鼠和SLP小鼠均受到保护,免受致死性埃立克体攻击感染。此外,我们在常规小鼠和SLP小鼠的网膜中均发现了高频的埃立克体特异性浆母细胞。埃立克体感染期间产生的网膜浆母细胞缺乏CD138表达,但以与其脾脏对应细胞相似的方式表达CD11c。选择性清除表达CD11c的B细胞几乎消除了网膜中埃立克体特异性浆母细胞,并降低了抗原特异性血清IgM,从而确定网膜B细胞是SLP小鼠中IgM产生的来源。网膜浆母细胞的产生具有途径依赖性,因为它们在腹腔感染后可被检测到,但在静脉感染后未被检测到。我们的数据确定网膜是细胞内细菌感染期间IgM产生的重要辅助部位。

相似文献

1
The omentum is a site of protective IgM production during intracellular bacterial infection.
Infect Immun. 2015 May;83(5):2139-47. doi: 10.1128/IAI.00295-15. Epub 2015 Mar 16.
3
IgM production by bone marrow plasmablasts contributes to long-term protection against intracellular bacterial infection.
J Immunol. 2011 Jan 15;186(2):1011-21. doi: 10.4049/jimmunol.1002836. Epub 2010 Dec 8.
4
B cell activating factor inhibition impairs bacterial immunity by reducing T cell-independent IgM secretion.
Infect Immun. 2013 Dec;81(12):4490-7. doi: 10.1128/IAI.00998-13. Epub 2013 Sep 30.
5
Liver Is a Generative Site for the B Cell Response to Ehrlichia muris.
Immunity. 2019 Dec 17;51(6):1088-1101.e5. doi: 10.1016/j.immuni.2019.10.004. Epub 2019 Nov 12.
6
Impaired germinal center responses and suppression of local IgG production during intracellular bacterial infection.
J Immunol. 2010 May 1;184(9):5085-93. doi: 10.4049/jimmunol.0902710. Epub 2010 Mar 29.
7
Antigen-driven induction of polyreactive IgM during intracellular bacterial infection.
J Immunol. 2012 Aug 1;189(3):1440-7. doi: 10.4049/jimmunol.1200878. Epub 2012 Jun 22.
8
NK Cell-Mediated Regulation of Protective Memory Responses against Intracellular Ehrlichial Pathogens.
PLoS One. 2016 Apr 19;11(4):e0153223. doi: 10.1371/journal.pone.0153223. eCollection 2016.
9
T cell-dependent IgM memory B cells generated during bacterial infection are required for IgG responses to antigen challenge.
J Immunol. 2013 Aug 1;191(3):1240-9. doi: 10.4049/jimmunol.1300062. Epub 2013 Jun 26.
10
T-Cell-independent humoral immunity is sufficient for protection against fatal intracellular ehrlichia infection.
Infect Immun. 2007 Oct;75(10):4933-41. doi: 10.1128/IAI.00705-07. Epub 2007 Jul 30.

引用本文的文献

1
Know Your ABCs: Discovery, Differentiation, and Targeting of T-Bet+ B Cells.
Immunol Rev. 2025 Mar;330(1):e13440. doi: 10.1111/imr.13440.
2
Vaccine Development: Challenges and Advances.
Vet Sci. 2024 Dec 5;11(12):624. doi: 10.3390/vetsci11120624.
4
T-bet B cells Dominate the Peritoneal Cavity B Cell Response during Murine Intracellular Bacterial Infection.
J Immunol. 2022 Jun 15;208(12):2749-2760. doi: 10.4049/jimmunol.2101209. Epub 2022 Jun 3.
5
The Obesity Paradox Predicts the Second Wave of COVID-19 to Be Severe in Western Countries.
Int J Environ Res Public Health. 2021 Jan 25;18(3):1029. doi: 10.3390/ijerph18031029.
6
Covid-19: Fat, Obesity, Inflammation, Ethnicity, and Sex Differences.
Pathogens. 2020 Oct 26;9(11):887. doi: 10.3390/pathogens9110887.
7
Specialized immune responses in the peritoneal cavity and omentum.
J Leukoc Biol. 2021 Apr;109(4):717-729. doi: 10.1002/JLB.5MIR0720-271RR. Epub 2020 Sep 2.
8
Resident Memory B Cells.
Viral Immunol. 2020 May;33(4):282-293. doi: 10.1089/vim.2019.0141. Epub 2020 Feb 5.
9
Specific Biological Features of Adipose Tissue, and Their Impact on HIV Persistence.
Front Microbiol. 2019 Dec 17;10:2837. doi: 10.3389/fmicb.2019.02837. eCollection 2019.
10
2019 Russell Ross Memorial Lecture in Vascular Biology: B Lymphocyte-Mediated Protective Immunity in Atherosclerosis.
Arterioscler Thromb Vasc Biol. 2020 Feb;40(2):309-322. doi: 10.1161/ATVBAHA.119.313064. Epub 2019 Dec 19.

本文引用的文献

1
Identification of Targets for Prevention of Peritoneal Catheter Tunnel and Exit-Site Infections in Low Incidence Settings.
Perit Dial Int. 2016 Jan-Feb;36(1):43-51. doi: 10.3747/pdi.2014.00131. Epub 2014 Oct 7.
2
An animal model of a newly emerging human ehrlichiosis.
J Infect Dis. 2015 Feb 1;211(3):452-61. doi: 10.1093/infdis/jiu372. Epub 2014 Jul 2.
3
Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes.
Nat Rev Immunol. 2013 Feb;13(2):118-32. doi: 10.1038/nri3383.
4
Antigen-driven induction of polyreactive IgM during intracellular bacterial infection.
J Immunol. 2012 Aug 1;189(3):1440-7. doi: 10.4049/jimmunol.1200878. Epub 2012 Jun 22.
5
Peritoneal tuberculosis mimicking ovarian cancer.
Eur J Obstet Gynecol Reprod Biol. 2012 May;162(1):105-8. doi: 10.1016/j.ejogrb.2012.02.010. Epub 2012 Mar 6.
6
B-1 cells in the bone marrow are a significant source of natural IgM.
Eur J Immunol. 2012 Jan;42(1):120-9. doi: 10.1002/eji.201141890. Epub 2011 Nov 28.
7
IgM production by bone marrow plasmablasts contributes to long-term protection against intracellular bacterial infection.
J Immunol. 2011 Jan 15;186(2):1011-21. doi: 10.4049/jimmunol.1002836. Epub 2010 Dec 8.
8
The importance of natural IgM: scavenger, protector and regulator.
Nat Rev Immunol. 2010 Nov;10(11):778-86. doi: 10.1038/nri2849. Epub 2010 Oct 15.
9
Adaptive immunity and adipose tissue biology.
Trends Immunol. 2010 Oct;31(10):384-90. doi: 10.1016/j.it.2010.08.001.
10
Impaired germinal center responses and suppression of local IgG production during intracellular bacterial infection.
J Immunol. 2010 May 1;184(9):5085-93. doi: 10.4049/jimmunol.0902710. Epub 2010 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验