Neely Michael, Margol Ashley, Fu Xiaowei, van Guilder Michael, Bayard David, Schumitzky Alan, Orbach Regina, Liu Siyu, Louie Stan, Hope William
Laboratory of Applied Pharmacokinetics and Bioinformatics, The Saban Research Institute and the Division of Pediatric Infectious Diseases, University of Southern California Children's Hospital Los Angeles, Los Angeles, California, USA
Division of Pediatric Hematology/Oncology, University of Southern California Children's Hospital Los Angeles, Los Angeles, California, USA.
Antimicrob Agents Chemother. 2015;59(6):3090-7. doi: 10.1128/AAC.00032-15. Epub 2015 Mar 16.
Despite the documented benefit of voriconazole therapeutic drug monitoring, nonlinear pharmacokinetics make the timing of steady-state trough sampling and appropriate dose adjustments unpredictable by conventional methods. We developed a nonparametric population model with data from 141 previously richly sampled children and adults. We then used it in our multiple-model Bayesian adaptive control algorithm to predict measured concentrations and doses in a separate cohort of 33 pediatric patients aged 8 months to 17 years who were receiving voriconazole and enrolled in a pharmacokinetic study. Using all available samples to estimate the individual Bayesian posterior parameter values, the median percent prediction bias relative to a measured target trough concentration in the patients was 1.1% (interquartile range, -17.1 to 10%). Compared to the actual dose that resulted in the target concentration, the percent bias of the predicted dose was -0.7% (interquartile range, -7 to 20%). Using only trough concentrations to generate the Bayesian posterior parameter values, the target bias was 6.4% (interquartile range, -1.4 to 14.7%; P = 0.16 versus the full posterior parameter value) and the dose bias was -6.7% (interquartile range, -18.7 to 2.4%; P = 0.15). Use of a sample collected at an optimal time of 4 h after a dose, in addition to the trough concentration, resulted in a nonsignificantly improved target bias of 3.8% (interquartile range, -13.1 to 18%; P = 0.32) and a dose bias of -3.5% (interquartile range, -18 to 14%; P = 0.33). With the nonparametric population model and trough concentrations, our control algorithm can accurately manage voriconazole therapy in children independently of steady-state conditions, and it is generalizable to any drug with a nonparametric pharmacokinetic model. (This study has been registered at ClinicalTrials.gov under registration no. NCT01976078.).
尽管已证明伏立康唑治疗药物监测有益,但非线性药代动力学使得通过传统方法难以预测稳态谷浓度采样时间和适当的剂量调整。我们利用141名之前采样丰富的儿童和成人的数据开发了一个非参数群体模型。然后,我们将其用于多模型贝叶斯自适应控制算法,以预测33名年龄在8个月至17岁、正在接受伏立康唑治疗并参与药代动力学研究的儿科患者的测量浓度和剂量。利用所有可用样本估计个体贝叶斯后验参数值,相对于患者测量的目标谷浓度,预测偏差的中位数为1.1%(四分位间距为-17.1%至10%)。与产生目标浓度的实际剂量相比,预测剂量的偏差百分比为-0.7%(四分位间距为-7%至20%)。仅使用谷浓度生成贝叶斯后验参数值时,目标偏差为6.4%(四分位间距为-1.4%至14.7%;与完整后验参数值相比,P = 0.16),剂量偏差为-6.7%(四分位间距为-18.7%至2.4%;P = 0.15)。除谷浓度外,使用给药后4小时最佳时间采集的样本,目标偏差非显著改善至3.8%(四分位间距为-13.1%至18%;P = 0.32),剂量偏差为-3.5%(四分位间距为-18%至14%;P = 0.33)。借助非参数群体模型和谷浓度,我们的控制算法能够独立于稳态条件准确管理儿童的伏立康唑治疗,并且可推广至任何具有非参数药代动力学模型的药物。(本研究已在ClinicalTrials.gov注册,注册号为NCT01976078。)