Donoghoe Mark W, Marschner Ian C
Int J Biostat. 2015 May;11(1):91-108. doi: 10.1515/ijb-2014-0044.
Generalized additive models (GAMs) based on the binomial and Poisson distributions can be used to provide flexible semi-parametric modelling of binary and count outcomes. When used with the canonical link function, these GAMs provide semi-parametrically adjusted odds ratios and rate ratios. For adjustment of other effect measures, including rate differences, risk differences and relative risks, non-canonical link functions must be used together with a constrained parameter space. However, the algorithms used to fit these models typically rely on a form of the iteratively reweighted least squares algorithm, which can be numerically unstable when a constrained non-canonical model is used. We describe an application of a combinatorial EM algorithm to fit identity link Poisson, identity link binomial and log link binomial GAMs in order to estimate semi-parametrically adjusted rate differences, risk differences and relative risks. Using smooth regression functions based on B-splines, the method provides stable convergence to the maximum likelihood estimates, and it ensures that the estimates always remain within the parameter space. It is also straightforward to apply a monotonicity constraint to the smooth regression functions. We illustrate the method using data from a clinical trial in heart attack patients.
基于二项分布和泊松分布的广义相加模型(GAMs)可用于对二元和计数结果进行灵活的半参数建模。当与典范链接函数一起使用时,这些GAMs可提供半参数调整的优势比和率比。为了调整其他效应量度,包括率差、风险差和相对风险,必须将非典范链接函数与受限参数空间一起使用。然而,用于拟合这些模型的算法通常依赖于某种形式的迭代加权最小二乘算法,当使用受限非典范模型时,该算法在数值上可能不稳定。我们描述了一种组合期望最大化(EM)算法的应用,用于拟合恒等链接泊松、恒等链接二项和对数链接二项GAMs,以估计半参数调整的率差、风险差和相对风险。该方法使用基于B样条的平滑回归函数,能稳定收敛到最大似然估计值,并确保估计值始终保持在参数空间内。对平滑回归函数应用单调性约束也很简单。我们使用来自心脏病发作患者临床试验的数据来说明该方法。