Suppr超能文献

使用风险比进行荟萃分析的陷阱。

Pitfalls of using the risk ratio in meta-analysis.

机构信息

School of Computing Sciences, University of East Anglia, Norwich, United Kingdom.

University of Massachusetts Medical School, Worcester, Massachusetts.

出版信息

Res Synth Methods. 2019 Sep;10(3):398-419. doi: 10.1002/jrsm.1347. Epub 2019 Apr 11.

Abstract

For meta-analysis of studies that report outcomes as binomial proportions, the most popular measure of effect is the odds ratio (OR), usually analyzed as log(OR). Many meta-analyses use the risk ratio (RR) and its logarithm because of its simpler interpretation. Although log(OR) and log(RR) are both unbounded, use of log(RR) must ensure that estimates are compatible with study-level event rates in the interval (0, 1). These complications pose a particular challenge for random-effects models, both in applications and in generating data for simulations. As background, we review the conventional random-effects model and then binomial generalized linear mixed models (GLMMs) with the logit link function, which do not have these complications. We then focus on log-binomial models and explore implications of using them; theoretical calculations and simulation show evidence of biases. The main competitors to the binomial GLMMs use the beta-binomial (BB) distribution, either in BB regression or by maximizing a BB likelihood; a simulation produces mixed results. Two examples and an examination of Cochrane meta-analyses that used RR suggest bias in the results from the conventional inverse-variance-weighted approach. Finally, we comment on other measures of effect that have range restrictions, including risk difference, and outline further research.

摘要

对于报告二项式比例结果的研究进行荟萃分析,最受欢迎的效应衡量指标是优势比(OR),通常分析为对数优势比(log(OR))。由于其解释更简单,许多荟萃分析使用风险比(RR)及其对数。虽然 log(OR) 和 log(RR) 都是无界的,但使用 log(RR) 必须确保估计值与研究水平的事件率在区间(0,1)内兼容。这些复杂性对随机效应模型构成了特殊挑战,无论是在应用还是在为模拟生成数据方面。作为背景,我们回顾了传统的随机效应模型,然后是具有 logit 链接函数的二项式广义线性混合模型(GLMM),它们没有这些复杂性。然后我们专注于对数二项式模型,并探讨使用它们的影响;理论计算和模拟表明存在偏见的证据。二项式 GLMM 的主要竞争对手使用贝塔二项式(BB)分布,无论是在 BB 回归中还是通过最大化 BB 似然来使用;模拟产生了混合的结果。两个示例和对使用 RR 的 Cochrane 荟萃分析的检查表明,常规倒数方差加权方法的结果存在偏差。最后,我们评论了其他具有范围限制的效应衡量指标,包括风险差异,并概述了进一步的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/936f/6767076/37512d0d981b/JRSM-10-398-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验