Suppr超能文献

3D聚苯胺多孔层锚定柱状石墨烯片:增强界面结合并具有高导电性,用于更好的电荷存储应用。

3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications.

作者信息

Sekar Pandiaraj, Anothumakkool Bihag, Kurungot Sreekumar

机构信息

†Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.

‡Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2, Rafi Marg, New Delhi 110 001, India.

出版信息

ACS Appl Mater Interfaces. 2015 Apr 15;7(14):7661-9. doi: 10.1021/acsami.5b00504. Epub 2015 Mar 31.

Abstract

Here, we report synthesis of a 3-dimensional (3D) porous polyaniline (PANI) anchored on pillared graphene (G-PANI-PA) as an efficient charge storage material for supercapacitor applications. Benzoic acid (BA) anchored graphene, having spatially separated graphene layers (G-Bz-COOH), was used as a structure controlling support whereas 3D PANI growth has been achieved by a simple chemical oxidation of aniline in the presence of phytic acid (PA). The BA groups on G-Bz-COOH play a critical role in preventing the restacking of graphene to achieve a high surface area of 472 m(2)/g compared to reduced graphene oxide (RGO, 290 m(2)/g). The carboxylic acid (-COOH) group controls the rate of polymerization to achieve a compact polymer structure with micropores whereas the chelating nature of PA plays a crucial role to achieve the 3D growth pattern of PANI. This type of controlled interplay helps G-PANI-PA to achieve a high conductivity of 3.74 S/cm all the while maintaining a high surface area of 330 m(2)/g compared to PANI-PA (0.4 S/cm and 60 m(2)/g). G-PANI-PA thus conceives the characteristics required for facile charge mobility during fast charge-discharge cycles, which results in a high specific capacitance of 652 F/g for the composite. Owing to the high surface area along with high conductivity, G-PANI-PA displays a stable specific capacitance of 547 F/g even with a high mass loading of 3 mg/cm(2), an enhanced areal capacitance of 1.52 F/cm(2), and a volumetric capacitance of 122 F/cm(3). The reduced charge-transfer resistance (RCT) of 0.67 Ω displayed by G-PANI-PA compared to pure PANI (0.79 Ω) stands out as valid evidence of the improved charge mobility achieved by the system by growing the 3D PANI layer along the spatially separated layers of the graphene sheets. The low RCT helps the system to display capacitance retention as high as 65% even under a high current dragging condition of 10 A/g. High charge/discharge rates and good cycling stability are the other highlights of the supercapacitor system derived from this composite material.

摘要

在此,我们报道了一种锚定在柱状石墨烯上的三维(3D)多孔聚苯胺(G-PANI-PA)的合成,它是一种用于超级电容器应用的高效电荷存储材料。苯甲酸(BA)锚定的石墨烯,具有空间分离的石墨烯层(G-Bz-COOH),被用作结构控制支撑体,而3D聚苯胺的生长是通过在植酸(PA)存在下对苯胺进行简单的化学氧化来实现的。G-Bz-COOH上的BA基团在防止石墨烯重新堆叠以实现472 m²/g的高表面积方面起着关键作用,相比之下还原氧化石墨烯(RGO,290 m²/g)。羧酸(-COOH)基团控制聚合速率以实现具有微孔的致密聚合物结构,而PA的螯合性质在实现聚苯胺的3D生长模式方面起着至关重要的作用。这种类型的受控相互作用有助于G-PANI-PA实现3.74 S/cm的高电导率,同时与PANI-PA(0.4 S/cm和60 m²/g)相比保持330 m²/g的高表面积。因此,G-PANI-PA具备在快速充放电循环中实现电荷轻松迁移所需的特性,这使得该复合材料具有652 F/g的高比电容。由于高表面积以及高电导率,即使在3 mg/cm²的高质量负载下,G-PANI-PA仍显示出547 F/g的稳定比电容、1.52 F/cm²的增强面积电容和122 F/cm³的体积电容。与纯聚苯胺(0.79 Ω)相比,G-PANI-PA显示出0.67 Ω的降低的电荷转移电阻(RCT),这是该系统通过在石墨烯片的空间分离层上生长3D聚苯胺层实现电荷迁移改善的有效证据。低RCT有助于该系统即使在10 A/g的高电流拖曳条件下仍显示出高达65%的电容保持率。高充放电速率和良好的循环稳定性是由这种复合材料衍生的超级电容器系统的其他亮点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验