文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于光学/磁共振双模成像的靶向胶质瘤胶束

Glioma-targeting micelles for optical/magnetic resonance dual-mode imaging.

作者信息

Zhou Qing, Mu Ketao, Jiang Lingyu, Xie Hui, Liu Wei, Li Zhengzheng, Qi Hui, Liang Shuyan, Xu Huibi, Zhu Yanhong, Zhu Wenzhen, Yang Xiangliang

机构信息

National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China.

Radiology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.

出版信息

Int J Nanomedicine. 2015 Mar 5;10:1805-18. doi: 10.2147/IJN.S72910. eCollection 2015.


DOI:10.2147/IJN.S72910
PMID:25784806
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4356700/
Abstract

Surgical resection is the primary mode for glioma treatment, while gross total resection is difficult to achieve, due to the invasiveness of the gliomas. Meanwhile, the tumor-resection region is closely related to survival rate and life quality. Therefore, we developed optical/magnetic resonance imaging (MRI) bifunctional targeted micelles for glioma so as to delineate the glioma location before and during operation. The micelles were constructed through encapsulation of hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) with polyethylene glycol-block-polycaprolactone (PEG-b-PCL) by using a solvent-evaporation method, and modified with a near-infrared fluorescent probe, Cy5.5, in addition to the glioma-targeting ligand lactoferrin (Lf). Being encapsulated by PEG-b-PCL, the hydrophobic SPIONs dispersed well in phosphate-buffered saline over 4 weeks, and the relaxivity (r 2) of micelles was 215.4 mM(-1)·s(-1), with sustained satisfactory fluorescent imaging ability, which might have been due to the interval formed by PEG-b-PCL for avoiding the fluorescence quenching caused by SPIONs. The in vivo results indicated that the nanoparticles with Lf accumulated efficiently in glioma cells and prolonged the duration of hypointensity at the tumor site over 48 hours in the MR image compared to the nontarget group. Corresponding with the MRI results, the margin of the glioma was clearly demarcated in the fluorescence image, wherein the average fluorescence intensity of the tumor was about fourfold higher than that of normal brain tissue. Furthermore, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay results showed that the micelles were biocompatible at Fe concentrations of 0-100 μg/mL. In general, these optical/MRI bifunctional micelles can specifically target the glioma and provide guidance for surgical resection of the glioma before and during operation.

摘要

手术切除是胶质瘤治疗的主要方式,但由于胶质瘤具有侵袭性,难以实现全切。同时,肿瘤切除范围与生存率和生活质量密切相关。因此,我们开发了用于胶质瘤的光学/磁共振成像(MRI)双功能靶向胶束,以便在手术前和手术过程中描绘胶质瘤的位置。通过溶剂蒸发法,用聚乙二醇-嵌段-聚己内酯(PEG-b-PCL)包裹疏水性超顺磁性氧化铁纳米颗粒(SPIONs)构建胶束,并除了用胶质瘤靶向配体乳铁蛋白(Lf)修饰外,还用近红外荧光探针Cy5.5进行修饰。被PEG-b-PCL包裹后,疏水性SPIONs在4周内可很好地分散于磷酸盐缓冲盐水中,胶束的弛豫率(r2)为215.4 mM(-1)·s(-1),具有持续良好的荧光成像能力,这可能是由于PEG-b-PCL形成的间隔避免了SPIONs引起的荧光猝灭。体内结果表明,与非靶向组相比,带有Lf的纳米颗粒在胶质瘤细胞中有效蓄积,并使肿瘤部位在磁共振图像中的低信号持续时间延长超过48小时。与MRI结果相对应,在荧光图像中胶质瘤边界清晰可辨,其中肿瘤的平均荧光强度约为正常脑组织的四倍。此外,3-(4,5-二甲基-2-噻唑基)-2,5-二苯基-2-H-四唑溴盐检测结果表明,在铁浓度为0-100μg/mL时,胶束具有生物相容性。总体而言,这些光学/MRI双功能胶束可特异性靶向胶质瘤,并为手术前和手术过程中胶质瘤的手术切除提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/91e1e36196ff/ijn-10-1805Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/0a027241cf22/ijn-10-1805Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/0bcfc72cfd46/ijn-10-1805Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/1c4aa960e7d2/ijn-10-1805Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/5b8cbd06632b/ijn-10-1805Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/426abbaeeb4c/ijn-10-1805Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/7a3e07463b14/ijn-10-1805Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/bb5877c32ce4/ijn-10-1805Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/7ba7342620a7/ijn-10-1805Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/2be55fc8b948/ijn-10-1805Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/91e1e36196ff/ijn-10-1805Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/0a027241cf22/ijn-10-1805Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/0bcfc72cfd46/ijn-10-1805Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/1c4aa960e7d2/ijn-10-1805Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/5b8cbd06632b/ijn-10-1805Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/426abbaeeb4c/ijn-10-1805Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/7a3e07463b14/ijn-10-1805Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/bb5877c32ce4/ijn-10-1805Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/7ba7342620a7/ijn-10-1805Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/2be55fc8b948/ijn-10-1805Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6263/4356700/91e1e36196ff/ijn-10-1805Fig10.jpg

相似文献

[1]
Glioma-targeting micelles for optical/magnetic resonance dual-mode imaging.

Int J Nanomedicine. 2015-3-5

[2]
Folate-targeted polymeric micelles loaded with ultrasmall superparamagnetic iron oxide: combined small size and high MRI sensitivity.

Int J Nanomedicine. 2012-6-11

[3]
pH/temperature sensitive magnetic nanogels conjugated with Cy5.5-labled lactoferrin for MR and fluorescence imaging of glioma in rats.

Biomaterials. 2013-6-28

[4]
Doxorubicin and indocyanine green loaded superparamagnetic iron oxide nanoparticles with PEGylated phospholipid coating for magnetic resonance with fluorescence imaging and chemotherapy of glioma.

Int J Nanomedicine. 2018-12-20

[5]
Biodistribution of biodegradable polymeric nano-carriers loaded with busulphan and designed for multimodal imaging.

J Nanobiotechnology. 2016-12-19

[6]
Lactoferrin-conjugated superparamagnetic iron oxide nanoparticles as a specific MRI contrast agent for detection of brain glioma in vivo.

Biomaterials. 2011-1

[7]
Folate‑targeted polymeric micelles loaded with superparamagnetic iron oxide as a contrast agent for magnetic resonance imaging of a human tongue cancer cell line.

Mol Med Rep. 2017-9-20

[8]
Citric acid coated ultrasmall superparamagnetic iron oxide nanoparticles conjugated with lactoferrin for targeted negative MR imaging of glioma.

J Biomater Appl. 2021-7

[9]
Monoclonal antibody-conjugated superparamagnetic iron oxide nanoparticles for imaging of epidermal growth factor receptor-targeted cells and gliomas.

Mol Imaging. 2015

[10]
Dual-Targeting Lactoferrin-Conjugated Polymerized Magnetic Polydiacetylene-Assembled Nanocarriers with Self-Responsive Fluorescence/Magnetic Resonance Imaging for In Vivo Brain Tumor Therapy.

Adv Healthc Mater. 2016-3

引用本文的文献

[1]
Next-generation agents for fluorescence-guided glioblastoma surgery.

Bioeng Transl Med. 2023-10-11

[2]
Recent development of contrast agents for magnetic resonance and multimodal imaging of glioblastoma.

J Nanobiotechnology. 2022-6-16

[3]
Development of Encapsulation Strategies and Composite Edible Films to Maintain Lactoferrin Bioactivity: A Review.

Materials (Basel). 2021-11-30

[4]
Advances in magnetic resonance imaging contrast agents for glioblastoma-targeting theranostics.

Regen Biomater. 2021-11-12

[5]
Construction of nanomaterials as contrast agents or probes for glioma imaging.

J Nanobiotechnology. 2021-5-3

[6]
Agents for fluorescence-guided glioma surgery: a systematic review of preclinical and clinical results.

Acta Neurochir (Wien). 2017-1

[7]
Recombinant epidermal growth factor-like domain-1 from coagulation factor VII functionalized iron oxide nanoparticles for targeted glioma magnetic resonance imaging.

Int J Nanomedicine. 2016-10-6

[8]
Long Noncoding RNA miR210HG as a Potential Biomarker for the Diagnosis of Glioma.

PLoS One. 2016-9-27

[9]
Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances.

Mater Today (Kidlington). 2016-4

[10]
Advances in Targeted Drug Delivery Approaches for the Central Nervous System Tumors: The Inspiration of Nanobiotechnology.

J Neuroimmune Pharmacol. 2016-7-23

本文引用的文献

[1]
Image-guided cancer surgery using near-infrared fluorescence.

Nat Rev Clin Oncol. 2013-7-23

[2]
pH/temperature sensitive magnetic nanogels conjugated with Cy5.5-labled lactoferrin for MR and fluorescence imaging of glioma in rats.

Biomaterials. 2013-6-28

[3]
Diagnostic and therapeutic avenues for glioblastoma: no longer a dead end?

Nat Rev Clin Oncol. 2012-11-27

[4]
Hyaluronic acid-ceramide-based optical/MR dual imaging nanoprobe for cancer diagnosis.

J Control Release. 2012-6-15

[5]
Two-order targeted brain tumor imaging by using an optical/paramagnetic nanoprobe across the blood brain barrier.

ACS Nano. 2011-12-22

[6]
Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review.

Lancet Oncol. 2011-8-23

[7]
Impact of the combination of 5-aminolevulinic acid-induced fluorescence with intraoperative magnetic resonance imaging-guided surgery for glioma.

World Neurosurg. 2011

[8]
Development of MRI/NIRF 'activatable' multimodal imaging probe based on iron oxide nanoparticles.

J Control Release. 2011-7-23

[9]
A review of NIR dyes in cancer targeting and imaging.

Biomaterials. 2011-7-2

[10]
Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides.

Nat Med. 2010-12-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索