Suppr超能文献

用于癌症诊断、治疗及治疗监测的磁性纳米颗粒:最新进展

Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances.

作者信息

Revia Richard A, Zhang Miqin

机构信息

Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.

出版信息

Mater Today (Kidlington). 2016 Apr;19(3):157-168. doi: 10.1016/j.mattod.2015.08.022.

Abstract

The development of nanoparticles (NPs) for use in all facets of oncological disease detection and therapy has shown great progress over the past two decades. NPs have been tailored for use as contrast enhancement agents for imaging, drug delivery vehicles, and most recently as a therapeutic component in initiating tumor cell death in magnetic and photonic ablation therapies. Of the many possible core constituents of NPs, such as gold, silver, carbon nanotubes, fullerenes, manganese oxide, lipids, micelles, etc., iron oxide (or magnetite) based NPs have been extensively investigated due to their excellent superparamagnetic, biocompatible, and biodegradable properties. This review addresses recent applications of magnetite NPs in diagnosis, treatment, and treatment monitoring of cancer. Finally, some views will be discussed concerning the toxicity and clinical translation of iron oxide NPs and the future outlook of NP development to facilitate multiple therapies in a single formulation for cancer theranostics.

摘要

在过去二十年中,用于肿瘤疾病检测和治疗各个方面的纳米颗粒(NPs)的发展取得了巨大进展。纳米颗粒已被设计用作成像的造影增强剂、药物递送载体,最近还用作磁消融和光消融疗法中引发肿瘤细胞死亡的治疗成分。在纳米颗粒的许多可能核心成分中,如金、银、碳纳米管、富勒烯、氧化锰、脂质、胶束等,基于氧化铁(或磁铁矿)的纳米颗粒因其优异的超顺磁性、生物相容性和可生物降解性而受到广泛研究。本文综述了磁铁矿纳米颗粒在癌症诊断、治疗和治疗监测中的最新应用。最后,将讨论一些关于氧化铁纳米颗粒的毒性和临床转化以及纳米颗粒开发的未来前景的观点,以促进在单一制剂中实现癌症诊疗一体化的多种治疗方法。

相似文献

1
Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances.
Mater Today (Kidlington). 2016 Apr;19(3):157-168. doi: 10.1016/j.mattod.2015.08.022.
2
Theranostic Nanoparticles for RNA-Based Cancer Treatment.
Acc Chem Res. 2019 Jun 18;52(6):1496-1506. doi: 10.1021/acs.accounts.9b00101. Epub 2019 May 28.
3
A review of small molecules and drug delivery applications using gold and iron nanoparticles.
Int J Nanomedicine. 2019 Mar 11;14:1633-1657. doi: 10.2147/IJN.S184723. eCollection 2019.
4
Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic.
Curr Med Chem. 2018;25(34):4269-4303. doi: 10.2174/0929867325666171229141156.
5
Polymer coated gold-ferric oxide superparamagnetic nanoparticles for theranostic applications.
J Nanobiotechnology. 2018 Oct 13;16(1):80. doi: 10.1186/s12951-018-0405-7.
6
Long-term live cells observation of internalized fluorescent Fe@C nanoparticles in constant magnetic field.
J Nanobiotechnology. 2019 Feb 6;17(1):27. doi: 10.1186/s12951-019-0463-5.
7
Magnetite-based Janus nanoparticles, their synthesis and biomedical applications.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023 Nov-Dec;15(6):e1908. doi: 10.1002/wnan.1908. Epub 2023 Jun 4.
8
Cancer treatment and toxicity outlook of nanoparticles.
Environ Res. 2023 Nov 15;237(Pt 1):116870. doi: 10.1016/j.envres.2023.116870. Epub 2023 Aug 9.

引用本文的文献

5
Iron oxide based magnetic nanoparticles for hyperthermia, MRI and drug delivery applications: a review.
RSC Adv. 2025 Apr 14;15(15):11587-11616. doi: 10.1039/d5ra00728c. eCollection 2025 Apr 9.
7
Stimuli-responsive Graphene-polysaccharide Nanocomposites for Drug Delivery and Tissue Engineering.
Curr Org Synth. 2025;22(2):211-233. doi: 10.2174/0115701794298435240324175513.
8
Enhanced Delivery and Potency of Chemotherapeutics in Melanoma Treatment via Magnetite Nanobioconjugates.
ACS Omega. 2024 Oct 30;9(45):45402-45420. doi: 10.1021/acsomega.4c07415. eCollection 2024 Nov 12.
9
Review on Photoacoustic Monitoring after Drug Delivery: From Label-Free Biomarkers to Pharmacokinetics Agents.
Pharmaceutics. 2024 Sep 24;16(10):1240. doi: 10.3390/pharmaceutics16101240.

本文引用的文献

1
Doxorubicin and FeO loaded albumin nanoparticles with folic acid modified dextran surface for tumor diagnosis and therapy.
J Mater Chem B. 2014 Dec 7;2(45):7978-7987. doi: 10.1039/c4tb01359j. Epub 2014 Oct 21.
2
Tailoring the surface charge of dextran-based polymer coated SPIONs for modulated stem cell uptake and MRI contrast.
Biomater Sci. 2015 Apr;3(4):608-16. doi: 10.1039/c5bm00011d. Epub 2015 Feb 26.
4
Glioma-targeting micelles for optical/magnetic resonance dual-mode imaging.
Int J Nanomedicine. 2015 Mar 5;10:1805-18. doi: 10.2147/IJN.S72910. eCollection 2015.
5
Temozolomide nanoparticles for targeted glioblastoma therapy.
ACS Appl Mater Interfaces. 2015 Apr 1;7(12):6674-82. doi: 10.1021/am5092165. Epub 2015 Mar 18.
6
Bionanotechnology and the future of glioma.
Surg Neurol Int. 2015 Feb 13;6(Suppl 1):S45-58. doi: 10.4103/2152-7806.151334. eCollection 2015.
8
Nanoparticle mediated silencing of DNA repair sensitizes pediatric brain tumor cells to γ-irradiation.
Mol Oncol. 2015 Jun;9(6):1071-80. doi: 10.1016/j.molonc.2015.01.006. Epub 2015 Jan 29.
9
Positron emission tomography imaging using radiolabeled inorganic nanomaterials.
Acc Chem Res. 2015 Feb 17;48(2):286-94. doi: 10.1021/ar500362y. Epub 2015 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验