Suppr超能文献

Induction of size reduction in Escherichia coli by near-ultraviolet light.

作者信息

Caldeira de Araujo A, Favre A

出版信息

Eur J Biochem. 1985 Feb 1;146(3):605-10. doi: 10.1111/j.1432-1033.1985.tb08694.x.

Abstract

Escherichia coli AB1157 cells, growing exponentially at 37 degrees C in 63B1 medium (supplemented with glucose and casamino acids) with a doubling time of 50 min, were subjected to continuous illumination with 366-nm light at a fluence of 1.5 kJ . m-2 X min-1. Under these conditions, the growth rate decreased and after 1 h of illumination, a new stable exponential mode was reached with a doubling-time of 73 min. This reduction in growth rate occurred without any change in the rate of cell division for two generations after the beginning of illumination. Survival was unaffected, implying that cell size must have decreased. This was confirmed with size distribution curves of control and illuminated cells obtained with a Coulter counter. Furthermore electron micrographs of negatively stained cells indicated that illumination results in a 30-40% decrease in cell length, the diameter increasing by 8%. Hence 366-nm light uncouples growth and division rates. Illumination under the above conditions triggered the accumulation in vivo of 8-13-linked tRNA. The stationary level of the 8-13 link, 80% of the maximal level, was reached precisely when the growth rate reached its new stable value. Furthermore, no reduction in growth rate occurred in a nuv- cell lacking 4-thiouridine in its tRNAs. Hence we conclude that the 366-nm photons trigger partial tRNA inactivation with consequent slowing down of protein synthesis and accordingly of the cell growth rate. In addition, the stringent response has at most a minor effect. In conclusion, near-ultraviolet light is able to decrease the rate of cell growth by restricting the availability of charged tRNAs, and this occurs without affecting the cell division rate.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验