Suppr超能文献

一种降低太空辐射癌症风险预测不确定性的新方法。

A new approach to reduce uncertainties in space radiation cancer risk predictions.

作者信息

Cucinotta Francis A

机构信息

Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, Nevada, United States of America.

出版信息

PLoS One. 2015 Mar 19;10(3):e0120717. doi: 10.1371/journal.pone.0120717. eCollection 2015.

Abstract

The prediction of space radiation induced cancer risk carries large uncertainties with two of the largest uncertainties being radiation quality and dose-rate effects. In risk models the ratio of the quality factor (QF) to the dose and dose-rate reduction effectiveness factor (DDREF) parameter is used to scale organ doses for cosmic ray proton and high charge and energy (HZE) particles to a hazard rate for γ-rays derived from human epidemiology data. In previous work, particle track structure concepts were used to formulate a space radiation QF function that is dependent on particle charge number Z, and kinetic energy per atomic mass unit, E. QF uncertainties where represented by subjective probability distribution functions (PDF) for the three QF parameters that described its maximum value and shape parameters for Z and E dependences. Here I report on an analysis of a maximum QF parameter and its uncertainty using mouse tumor induction data. Because experimental data for risks at low doses of γ-rays are highly uncertain which impacts estimates of maximum values of relative biological effectiveness (RBEmax), I developed an alternate QF model, denoted QFγAcute where QFs are defined relative to higher acute γ-ray doses (0.5 to 3 Gy). The alternate model reduces the dependence of risk projections on the DDREF, however a DDREF is still needed for risk estimates for high-energy protons and other primary or secondary sparsely ionizing space radiation components. Risk projections (upper confidence levels (CL)) for space missions show a reduction of about 40% (CL∼50%) using the QFγAcute model compared the QFs based on RBEmax and about 25% (CL∼35%) compared to previous estimates. In addition, I discuss how a possible qualitative difference leading to increased tumor lethality for HZE particles compared to low LET radiation and background tumors remains a large uncertainty in risk estimates.

摘要

空间辐射诱发癌症风险的预测存在很大的不确定性,其中两个最大的不确定性是辐射品质和剂量率效应。在风险模型中,品质因数(QF)与剂量和剂量率降低有效性因数(DDREF)参数的比值用于将宇宙射线质子以及高电荷和能量(HZE)粒子的器官剂量换算为源自人类流行病学数据的γ射线的危险率。在之前的工作中,利用粒子径迹结构概念来制定一个依赖于粒子电荷数Z和每原子质量单位动能E的空间辐射QF函数。QF的不确定性由三个QF参数的主观概率分布函数(PDF)表示,这三个参数描述了其最大值以及Z和E依赖性的形状参数。在此,我报告一项利用小鼠肿瘤诱发数据对最大QF参数及其不确定性的分析。由于低剂量γ射线风险的实验数据高度不确定,这影响了相对生物有效性(RBEmax)最大值的估计,我开发了一种替代的QF模型,称为QFγAcute,其中QF是相对于较高的急性γ射线剂量(0.5至3 Gy)定义的。该替代模型降低了风险预测对DDREF的依赖性,然而,对于高能质子和其他主要或次要的低电离空间辐射成分的风险估计,仍然需要一个DDREF。与基于RBEmax的QF相比,使用QFγAcute模型的空间任务风险预测(上置信水平(CL))降低了约40%(CL约为50%),与之前的估计相比降低了约25%(CL约为35%)。此外,我还讨论了与低传能线密度辐射和背景肿瘤相比,HZE粒子可能导致肿瘤致死率增加的定性差异如何仍然是风险估计中的一个很大的不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24a5/4366386/5e044ec087d5/pone.0120717.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验