Suppr超能文献

来自硫酸盐还原菌梭菌属BXM的亚砷酸盐甲基转移酶的鉴定及催化残基

Identification and catalytic residues of the arsenite methyltransferase from a sulfate-reducing bacterium, Clostridium sp. BXM.

作者信息

Wang Pei-Pei, Bao Peng, Sun Guo-Xin

机构信息

State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

出版信息

FEMS Microbiol Lett. 2015 Jan;362(1):1-8. doi: 10.1093/femsle/fnu003. Epub 2014 Dec 4.

Abstract

Arsenic methylation is an important process frequently occurring in anaerobic environments. Anaerobic microorganisms have been implicated as the major contributors for As methylation. However, very little information is available regarding the enzymatic mechanism of As methylation by anaerobes. In this study, one novel sulfate-reducing bacterium isolate, Clostridium sp. BXM, which was isolated from a paddy soil in our laboratory, was demonstrated to have the ability of methylating As. One putative arsenite S-Adenosyl-Methionine methyltransferase (ArsM) gene, CsarsM was cloned from Clostridium sp. BXM. Heterologous expression of CsarsM conferred As resistance and the ability of methylating As to an As-sensitive strain of Escherichia coli. Purified methyltransferase CsArsM catalyzed the formation of methylated products from arsenite, further confirming its function of As methylation. Site-directed mutagenesis studies demonstrated that three conserved cysteine residues at positions 65, 153 and 203 in CsArsM are necessary for arsenite methylation, but only Cysteine 153 and Cysteine 203 are required for the methylation of monomethylarsenic to dimethylarsenic. These results provided the characterization of arsenic methyltransferase from anaerobic sulfate-reducing bacterium. Given that sulfate-reducing bacteria are ubiquitous in various wetlands including paddy soils, enzymatic methylation mediated by these anaerobes is proposed to contribute to the arsenic biogeochemical cycling.

摘要

砷甲基化是一种在厌氧环境中频繁发生的重要过程。厌氧微生物被认为是砷甲基化的主要贡献者。然而,关于厌氧菌砷甲基化的酶促机制,目前可用的信息非常少。在本研究中,从我们实验室的稻田土壤中分离出一种新型的硫酸盐还原菌,梭菌属BXM,已证明其具有甲基化砷的能力。从梭菌属BXM中克隆出一个假定的亚砷酸盐S-腺苷甲硫氨酸甲基转移酶(ArsM)基因CsarsM。CsarsM的异源表达赋予了对砷敏感的大肠杆菌菌株抗砷能力和甲基化砷的能力。纯化的甲基转移酶CsArsM催化亚砷酸盐形成甲基化产物,进一步证实了其砷甲基化功能。定点诱变研究表明,CsArsM中第65、153和203位的三个保守半胱氨酸残基对于亚砷酸盐甲基化是必需的,但单甲基砷向二甲基砷的甲基化仅需要半胱氨酸153和半胱氨酸203。这些结果提供了厌氧硫酸盐还原菌中砷甲基转移酶的特征。鉴于硫酸盐还原菌在包括稻田土壤在内的各种湿地中普遍存在,这些厌氧菌介导的酶促甲基化被认为有助于砷的生物地球化学循环。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验