Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; Ningbo Research Center for Urban Environment, Chinese Academy of Sciences, Ningbo, China.
J Hazard Mater. 2015 Jul 15;292:61-9. doi: 10.1016/j.jhazmat.2015.03.005. Epub 2015 Mar 5.
With the proliferation of silver nanoparticles (AgNPs), their potential entry into the environment has attracted increasing concern. Although photochemical transformation is an important fate of AgNPs in aquatic environments due to their strong light absorption, little is known about the evolution and transformation mechanisms of AgNPs. This study investigated the morphological evolution and reconstruction of AgNPs during photoconversion in the presence of natural organic matter (NOM). In the dark, the AgNPs formed chain-like structures through bridging effects with NOM at concentrations of 0.1 and 1 mg/L, and the proportion of Ag(+) in solution in the presence of 10 mg/L NOM was reduced by roughly half compared with that in the absence of NOM. Under irradiation, NOM participated in the photoreaction of AgNPs and can decelerate the photoreaction of AgNPs via several mechanisms, including light attenuation, the formation of a NOM coating, and competing with Ag for photons. Additionally, NOM can substitute for citrate as a stabilizing agent to compensate for the loss of AgNP stability due to citrate mineralization under extended irradiation, producing stable triangular nanosilver in aquatic environments. This study sheds light on the behavioral differences of AgNPs in different aquatic systems, which create uncertainties and difficulties in assessing the environmental risks of AgNPs.
随着银纳米粒子(AgNPs)的大量出现,其进入环境的潜在风险引起了越来越多的关注。尽管光化学转化是 AgNPs 在水生环境中的重要归宿,因为它们具有很强的光吸收能力,但对于 AgNPs 的演化和转化机制知之甚少。本研究探讨了在天然有机物(NOM)存在下,AgNPs 在光转化过程中的形态演变和重构。在黑暗中,AgNPs 通过与 0.1 和 1 mg/L 浓度的 NOM 的桥接作用形成链状结构,而在 10 mg/L NOM 存在下,溶液中 Ag(+)的比例比没有 NOM 时减少了大约一半。在光照下,NOM 参与了 AgNPs 的光反应,通过几种机制可以减缓 AgNPs 的光反应,包括光衰减、NOM 涂层的形成以及与 Ag 竞争光子。此外,NOM 可以替代柠檬酸盐作为稳定剂,以弥补由于柠檬酸矿化作用导致的 AgNP 稳定性在延长照射下的损失,从而在水生环境中产生稳定的三角形纳米银。本研究揭示了 AgNPs 在不同水生系统中的行为差异,这为评估 AgNPs 的环境风险带来了不确定性和困难。