Suppr超能文献

g-C3N4/BiVO4纳米复合材料增强的可见光光催化活性:第一性原理研究

Enhanced visible-light photocatalytic activity of a g-C3N4/BiVO4 nanocomposite: a first-principles study.

作者信息

Zhang Jihua, Ren Fengzhu, Deng Mingsen, Wang Yuanxu

机构信息

Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Normal College, 115 Gaoxin Road, Guiyang, 550018, China.

出版信息

Phys Chem Chem Phys. 2015 Apr 21;17(15):10218-26. doi: 10.1039/c4cp06089j.

Abstract

The structural, electronic, and optical properties of a g-C3N4(001)/BiVO4(010) nanocomposite have been investigated using first-principles calculations. The results indicate that g-C3N4(001) can stably adsorb onto the BiVO4(010) surface, and it tends to form a regular wavy shape. The calculated band gap of the g-C3N4(001)/BiVO4(010) nanocomposite is narrower compared with that of BiVO4 or BiVO4(010), primarily due to the introduction of N 2p states near the Fermi level. The g-C3N4(001)/BiVO4(010) nanocomposite has a favorable type-II band alignment; thus, photoexcited electrons can be injected into the conduction band of g-C3N4(001) from the conduction band of BiVO4(010). The proper interface charge distribution facilitates carrier separation in the g-C3N4(001)/BiVO4(010) interface region. The electron injection and carrier separation can prevent the recombination of electron-hole pairs. The calculated absorption coefficients indicate an obvious redshift of the absorption edge, which is in good agreement with the experimental results. Our calculation results suggest that the g-C3N4(001)/BiVO4(010) nanocomposite has significant advantages for visible-light photocatalysis.

摘要

利用第一性原理计算研究了g-C3N4(001)/BiVO4(010)纳米复合材料的结构、电子和光学性质。结果表明,g-C3N4(001)能够稳定吸附在BiVO4(010)表面,并倾向于形成规则的波浪形状。与BiVO4或BiVO4(010)相比,计算得到的g-C3N4(001)/BiVO4(010)纳米复合材料的带隙更窄,这主要是由于在费米能级附近引入了N 2p态。g-C3N4(001)/BiVO4(010)纳米复合材料具有良好的II型能带排列;因此,光激发电子可以从BiVO4(010)的导带注入到g-C3N4(001)的导带中。适当的界面电荷分布有利于g-C3N4(001)/BiVO4(010)界面区域的载流子分离。电子注入和载流子分离可以防止电子-空穴对的复合。计算得到的吸收系数表明吸收边有明显的红移,这与实验结果吻合良好。我们的计算结果表明,g-C3N4(001)/BiVO4(010)纳米复合材料在可见光光催化方面具有显著优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验