Suppr超能文献

植物糖原和肝糖原的酸水解及分子密度有助于理解糖原α(复合)颗粒中的键合情况。

Acid hydrolysis and molecular density of phytoglycogen and liver glycogen helps understand the bonding in glycogen α (composite) particles.

作者信息

Powell Prudence O, Sullivan Mitchell A, Sheehy Joshua J, Schulz Benjamin L, Warren Frederick J, Gilbert Robert G

机构信息

Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, China; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia.

School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, QLD, Australia.

出版信息

PLoS One. 2015 Mar 23;10(3):e0121337. doi: 10.1371/journal.pone.0121337. eCollection 2015.

Abstract

Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired.

摘要

植物糖原(来自某些突变植物)和动物糖原都是高度分支的葡萄糖聚合物,在结构特征和分子大小范围上具有相似性。两者似乎都由较小的β颗粒形成复合α颗粒。肝糖原的分子大小分布是双峰的,具有明显的α和β组分,而植物糖原的分子大小分布是单峰的。本研究旨在加深我们对导致形成大α颗粒的肝糖原β颗粒之间联系本质的理解。它研究了这些分子在酸水解过程中大小分布的时间演变,以及两种葡聚糖分子密度的大小依赖性。植物糖原的单峰分布在水解过程中随时间均匀下降,而对于糖原,大颗粒降解得明显更快。这两种类型分子的分子密度大小依赖性呈现出质的不同形状。这些数据,结合降解过程中分布演变的定量模型,表明植物糖原和肝糖原中β颗粒聚合成α颗粒的键合方式不同,植物糖原形成糖苷键,而糖原很可能形成共价或强非共价键,最有可能涉及一种蛋白质。这一发现对于糖尿病很重要,因为糖尿病中α颗粒结构受损。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/549b/4370380/692e53be0aef/pone.0121337.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验