Suppr超能文献

植物分型(4D):一种用于对植物时空生长进行无创且精确监测的光场成像系统。

Phytotyping(4D) : a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth.

作者信息

Apelt Federico, Breuer David, Nikoloski Zoran, Stitt Mark, Kragler Friedrich

机构信息

Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.

University of Potsdam, Am Neuen Palais 10, 14469, Potsdam, Germany.

出版信息

Plant J. 2015 May;82(4):693-706. doi: 10.1111/tpj.12833. Epub 2015 Apr 16.

Abstract

Integrative studies of plant growth require spatially and temporally resolved information from high-throughput imaging systems. However, analysis and interpretation of conventional two-dimensional images is complicated by the three-dimensional nature of shoot architecture and by changes in leaf position over time, termed hyponasty. To solve this problem, Phytotyping(4D) uses a light-field camera that simultaneously provides a focus image and a depth image, which contains distance information about the object surface. Our automated pipeline segments the focus images, integrates depth information to reconstruct the three-dimensional architecture, and analyses time series to provide information about the relative expansion rate, the timing of leaf appearance, hyponastic movement, and shape for individual leaves and the whole rosette. Phytotyping(4D) was calibrated and validated using discs of known sizes, and plants tilted at various orientations. Information from this analysis was integrated into the pipeline to allow error assessment during routine operation. To illustrate the utility of Phytotyping(4D) , we compare diurnal changes in Arabidopsis thaliana wild-type Col-0 and the starchless pgm mutant. Compared to Col-0, pgm showed very low relative expansion rate in the second half of the night, a transiently increased relative expansion rate at the onset of light period, and smaller hyponastic movement including delayed movement after dusk, both at the level of the rosette and individual leaves. Our study introduces light-field camera systems as a tool to accurately measure morphological and growth-related features in plants.

摘要

植物生长的综合研究需要来自高通量成像系统的时空分辨信息。然而,由于茎结构的三维性质以及叶片位置随时间的变化(即偏下性),传统二维图像的分析和解释变得复杂。为了解决这个问题,植物分型(4D)使用了一种光场相机,它能同时提供聚焦图像和深度图像,其中深度图像包含有关物体表面的距离信息。我们的自动化流程对聚焦图像进行分割,整合深度信息以重建三维结构,并分析时间序列,以提供有关单个叶片和整个莲座叶丛的相对扩展率、叶片出现时间、偏下性运动以及形状的信息。植物分型(4D)使用已知尺寸的圆盘以及以各种方向倾斜的植物进行校准和验证。该分析得到的信息被整合到流程中,以便在常规操作过程中进行误差评估。为了说明植物分型(4D)的实用性,我们比较了拟南芥野生型Col-0和无淀粉pgm突变体的昼夜变化。与Col-0相比,pgm在夜间后半段的相对扩展率非常低,在光照期开始时相对扩展率短暂增加,并且在莲座叶丛和单个叶片水平上的偏下性运动较小,包括黄昏后运动延迟。我们的研究引入了光场相机系统作为一种准确测量植物形态和生长相关特征的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验