Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
Center for Plant Biology, College of Agriculture, Purdue University, West Lafayette, IN 47907, USA.
Plant Cell. 2023 Jun 26;35(7):2654-2677. doi: 10.1093/plcell/koad110.
Cellulose, the main component of the plant cell wall, is synthesized by the multimeric cellulose synthase (CESA) complex (CSC). In plant cells, CSCs are assembled in the endoplasmic reticulum or Golgi and transported through the endomembrane system to the plasma membrane (PM). However, how CESA catalytic activity or conserved motifs around the catalytic core influence vesicle trafficking or protein dynamics is not well understood. Here, we used yellow fluorescent protein (YFP)-tagged AtCESA6 and created 18 mutants in key motifs of the catalytic domain to analyze how they affected seedling growth, cellulose biosynthesis, complex formation, and CSC dynamics and trafficking in Arabidopsis thaliana. Seedling growth and cellulose content were reduced by nearly all mutations. Moreover, mutations in most conserved motifs slowed CSC movement in the PM as well as delivery of CSCs to the PM. Interestingly, mutations in the DDG and QXXRW motifs affected YFP-CESA6 abundance in the Golgi. These mutations also perturbed post-Golgi trafficking of CSCs. The 18 mutations were divided into 2 groups based on their phenotypes; we propose that Group I mutations cause CSC trafficking defects, whereas Group II mutations, especially in the QXXRW motif, affect protein folding and/or CSC rosette formation. Collectively, our results demonstrate that the CESA6 catalytic domain is essential for cellulose biosynthesis as well as CSC formation, protein folding and dynamics, and vesicle trafficking.
纤维素是植物细胞壁的主要成分,由多聚体纤维素合酶(CESA)复合物(CSC)合成。在植物细胞中,CSC 在内质网或高尔基体中组装,并通过内膜系统运输到质膜(PM)。然而,CESA 催化活性或催化核心周围的保守基序如何影响囊泡运输或蛋白质动力学尚不清楚。在这里,我们使用黄色荧光蛋白(YFP)标记的 AtCESA6,并在催化结构域的关键基序中创建了 18 个突变体,以分析它们如何影响幼苗生长、纤维素生物合成、复合物形成以及拟南芥 CSC 的动力学和运输。幼苗生长和纤维素含量几乎都因所有突变而降低。此外,大多数保守基序中的突变会减缓 PM 中 CSC 的运动以及 CSC 向 PM 的输送。有趣的是,DDG 和 QXXRW 基序中的突变会影响 YFP-CESA6 在高尔基体中的丰度。这些突变还扰乱了 CSC 的高尔基后运输。这 18 个突变根据其表型分为 2 组;我们提出,第 I 组突变导致 CSC 运输缺陷,而第 II 组突变,特别是在 QXXRW 基序中,影响蛋白质折叠和/或 CSC 玫瑰花结的形成。总之,我们的结果表明,CESA6 催化结构域对于纤维素生物合成以及 CSC 的形成、蛋白质折叠和动力学以及囊泡运输是必不可少的。