From IRCCS MultiMedica, Milan, Italy (M.C.); Humanitas Clinical and Research Center, Rozzano (MI), Italy (M.Q., M.M., G.C., L.E.); Milan Unit of the Institute of Genetic and Biomedical Research, Rozzano (MI), Italy (G.C., L.E.); Department of Cardiovascular Diseases, University of Milan, Rozzano (MI), Italy (G.C.); Department of Clinical and Experimental Medicine, Center of Excellence for Toxicological Research (CERT), University of Parma, Parma, Italy (M.M.); and Department of Medicine, University of California, San Diego (J.C.).
Circ Res. 2015 May 22;116(11):1753-64. doi: 10.1161/CIRCRESAHA.116.305178. Epub 2015 Mar 23.
The miR-143/145 cluster is highly expressed in smooth muscle cells (SMCs), where it regulates phenotypic switch and vascular homeostasis. Whether it plays a role in neighboring endothelial cells (ECs) is still unknown.
To determine whether SMCs control EC functions through passage of miR-143 and miR-145.
We used cocultures of SMCs and ECs under different conditions, as well as intact vessels to assess the transfer of miR-143 and miR-145 from one cell type to another. Imaging of cocultured cells transduced with fluorescent miRNAs suggested that miRNA transfer involves membrane protrusions known as tunneling nanotubes. Furthermore, we show that miRNA passage is modulated by the transforming growth factor (TGF) β pathway because both a specific transforming growth factor-β (TGFβ) inhibitor (SB431542) and an shRNA against TGFβRII suppressed the passage of miR-143/145 from SMCs to ECs. Moreover, miR-143 and miR-145 modulated angiogenesis by reducing the proliferation index of ECs and their capacity to form vessel-like structures when cultured on matrigel. We also identified hexokinase II (HKII) and integrin β 8 (ITGβ8)-2 genes essential for the angiogenic potential of ECs-as targets of miR-143 and miR-145, respectively. The inhibition of these genes modulated EC phenotype, similarly to miR-143 and miR-145 overexpression in ECs. These findings were confirmed by ex vivo and in vivo approaches, in which it was shown that TGFβ and vessel stress, respectively, triggered miR-143/145 transfer from SMCs to ECs.
Our results demonstrate that miR-143 and miR-145 act as communication molecules between SMCs and ECs to modulate the angiogenic and vessel stabilization properties of ECs.
miR-143/145 簇在平滑肌细胞 (SMCs) 中高度表达,在那里它调节表型转换和血管稳态。它是否在相邻的内皮细胞 (ECs) 中发挥作用尚不清楚。
确定 SMC 是否通过传递 miR-143 和 miR-145 来控制 EC 功能。
我们使用不同条件下的 SMC 和 EC 共培养物以及完整的血管来评估 miR-143 和 miR-145 从一种细胞类型转移到另一种细胞类型的情况。用荧光 miRNA 转导共培养细胞的成像表明,miRNA 转移涉及称为隧道纳米管的膜突起。此外,我们表明 miRNA 传递受转化生长因子 (TGF)β 途径调节,因为 TGFβ 的一种特异性抑制剂 (SB431542) 和针对 TGFβRII 的 shRNA 均抑制了 miR-143/145 从 SMC 到 EC 的传递。此外,miR-143 和 miR-145 通过降低 EC 的增殖指数及其在基质胶上形成管状结构的能力来调节血管生成。我们还确定了己糖激酶 II (HKII)和整合素 β8 (ITGβ8)-2 基因,它们分别是 EC 血管生成潜力的关键靶基因,作为 miR-143 和 miR-145 的靶基因。这些基因的抑制类似于 EC 中 miR-143 和 miR-145 的过表达,可调节 EC 表型。通过离体和体内方法证实了这些发现,结果表明 TGFβ 和血管应激分别触发了 miR-143/145 从 SMC 向 EC 的传递。
我们的研究结果表明,miR-143 和 miR-145 作为 SMC 和 EC 之间的通讯分子,调节 EC 的血管生成和血管稳定特性。