Suppr超能文献

基于萤火虫算法的支持向量机分类器构建。

The construction of support vector machine classifier using the firefly algorithm.

作者信息

Chao Chih-Feng, Horng Ming-Huwi

机构信息

Department of Computer Science and Information Engineering, National Pingtung University, No. 4-18, Min Sheng Road, Pingtung 90003, Taiwan.

出版信息

Comput Intell Neurosci. 2015;2015:212719. doi: 10.1155/2015/212719. Epub 2015 Feb 23.

Abstract

The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy.

摘要

支持向量机(SVM)中参数的设置对于其准确性和效率而言非常重要。在本文中,我们采用萤火虫算法来同时训练SVM的所有参数,包括惩罚参数、平滑度参数和拉格朗日乘子。所提出的方法称为基于萤火虫的SVM(萤火虫-SVM)。该工具未考虑特征选择,因为SVM与特征选择一起并不适用于多类分类应用,特别是对于一对多的多类SVM。在实验中,对二分类和多分类进行了探索。在二分类实验中,使用了加利福尼亚大学欧文分校(UCI)机器学习库中的十个基准数据集;此外,萤火虫-SVM被应用于超声冈上肌图像的多类诊断。萤火虫-SVM的分类性能还与与网格搜索方法相关的原始LIBSVM方法以及基于粒子群优化的SVM(PSO-SVM)进行了比较。实验结果支持使用萤火虫-SVM对模式分类进行分类以获得最大准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/613c/4352751/23ae3e681a5b/CIN2015-212719.001.jpg

相似文献

1
The construction of support vector machine classifier using the firefly algorithm.
Comput Intell Neurosci. 2015;2015:212719. doi: 10.1155/2015/212719. Epub 2015 Feb 23.
2
Classification of electrocardiogram signals with support vector machines and particle swarm optimization.
IEEE Trans Inf Technol Biomed. 2008 Sep;12(5):667-77. doi: 10.1109/TITB.2008.923147.
3
Nesting one-against-one algorithm based on SVMs for pattern classification.
IEEE Trans Neural Netw. 2008 Dec;19(12):2044-52. doi: 10.1109/TNN.2008.2003298.
4
An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data.
Biomed Res Int. 2018 Aug 30;2018:7538204. doi: 10.1155/2018/7538204. eCollection 2018.
5
Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines.
BMC Complement Altern Med. 2012 Aug 16;12:127. doi: 10.1186/1472-6882-12-127.
6
Support vector machines with constraints for sparsity in the primal parameters.
IEEE Trans Neural Netw. 2011 Aug;22(8):1269-83. doi: 10.1109/TNN.2011.2148727. Epub 2011 Jul 5.
7
Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO.
Comput Math Methods Med. 2018 Apr 29;2018:1461470. doi: 10.1155/2018/1461470. eCollection 2018.
9
MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data.
Bioinformatics. 2007 May 1;23(9):1106-14. doi: 10.1093/bioinformatics/btm036.
10
Cancer Feature Selection and Classification Using a Binary Quantum-Behaved Particle Swarm Optimization and Support Vector Machine.
Comput Math Methods Med. 2016;2016:3572705. doi: 10.1155/2016/3572705. Epub 2016 Aug 24.

引用本文的文献

2
Development and validation of radiomic signature for predicting overall survival in advanced-stage cervical cancer.
Front Nucl Med. 2023 May 17;3:1138552. doi: 10.3389/fnume.2023.1138552. eCollection 2023.
3
Predicting axillary response to neoadjuvant chemotherapy using peritumoral and intratumoral ultrasound radiomics in breast cancer subtypes.
iScience. 2024 Aug 13;27(9):110716. doi: 10.1016/j.isci.2024.110716. eCollection 2024 Sep 20.
5
Firefly-SVM predictive model for breast cancer subgroup classification with clinicopathological parameters.
Digit Health. 2023 Oct 16;9:20552076231207203. doi: 10.1177/20552076231207203. eCollection 2023 Jan-Dec.
7
Sensor Fault Diagnosis Method Based on -Grey Wolf Optimization-Support Vector Machine.
Comput Intell Neurosci. 2021 Sep 10;2021:1956394. doi: 10.1155/2021/1956394. eCollection 2021.
8
Optimal Operation of the Hybrid Electricity Generation System Using Multiverse Optimization Algorithm.
Comput Intell Neurosci. 2019 Mar 11;2019:6192980. doi: 10.1155/2019/6192980. eCollection 2019.
9
Machine learning for nuclear cardiology: The way forward.
J Nucl Cardiol. 2019 Oct;26(5):1755-1758. doi: 10.1007/s12350-018-1284-x. Epub 2018 Apr 20.

本文引用的文献

1
Evolutionary-driven support vector machines for determining the degree of liver fibrosis in chronic hepatitis C.
Artif Intell Med. 2011 Jan;51(1):53-65. doi: 10.1016/j.artmed.2010.06.002. Epub 2010 Aug 2.
2
A comparison of methods for multiclass support vector machines.
IEEE Trans Neural Netw. 2002;13(2):415-25. doi: 10.1109/72.991427.
4
Comparison of the predicted and observed secondary structure of T4 phage lysozyme.
Biochim Biophys Acta. 1975 Oct 20;405(2):442-51. doi: 10.1016/0005-2795(75)90109-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验