Chao Chih-Feng, Horng Ming-Huwi
Department of Computer Science and Information Engineering, National Pingtung University, No. 4-18, Min Sheng Road, Pingtung 90003, Taiwan.
Comput Intell Neurosci. 2015;2015:212719. doi: 10.1155/2015/212719. Epub 2015 Feb 23.
The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy.
支持向量机(SVM)中参数的设置对于其准确性和效率而言非常重要。在本文中,我们采用萤火虫算法来同时训练SVM的所有参数,包括惩罚参数、平滑度参数和拉格朗日乘子。所提出的方法称为基于萤火虫的SVM(萤火虫-SVM)。该工具未考虑特征选择,因为SVM与特征选择一起并不适用于多类分类应用,特别是对于一对多的多类SVM。在实验中,对二分类和多分类进行了探索。在二分类实验中,使用了加利福尼亚大学欧文分校(UCI)机器学习库中的十个基准数据集;此外,萤火虫-SVM被应用于超声冈上肌图像的多类诊断。萤火虫-SVM的分类性能还与与网格搜索方法相关的原始LIBSVM方法以及基于粒子群优化的SVM(PSO-SVM)进行了比较。实验结果支持使用萤火虫-SVM对模式分类进行分类以获得最大准确性。