文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

响应面法与萤火虫和随机森林算法融合的统一框架,用于通过体外再生水生大型植物穗状狐尾藻(Ceratophyllum demersum L.)提高铬的纳米植物修复效率。

A unified framework of response surface methodology and coalescing of Firefly with random forest algorithm for enhancing nano-phytoremediation efficiency of chromium via in vitro regenerated aquatic macrophyte coontail (Ceratophyllum demersum L.).

机构信息

Department of Information Systems and Technologies, Bilkent University, Ankara, Turkey.

Department of Environmental Protection Technology, Kazım Karabekir Vocational School, Karamanoğlu Mehmetbey University, 70600, Karaman, Turkey.

出版信息

Environ Sci Pollut Res Int. 2024 Jun;31(29):42185-42201. doi: 10.1007/s11356-024-33911-9. Epub 2024 Jun 11.


DOI:10.1007/s11356-024-33911-9
PMID:38862799
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11219440/
Abstract

Nano-phytoremediation is a novel green technique to remove toxic pollutants from the environment. In vitro regenerated Ceratophyllum demersum (L.) plants were exposed to different concentrations of chromium (Cr) and exposure times in the presence of titania nanoparticles (TiONPs). Response surface methodology was used for multiple statistical analyses like regression analysis and optimizing plots. The supplementation of NPs significantly impacted Cr in water and Cr removal (%), whereas NP × exposure time (T) statistically regulated all output parameters. The Firefly metaheuristic algorithm and the random forest (Firefly-RF) machine learning algorithms were coalesced to optimize hyperparameters, aiming to achieve the highest level of accuracy in predicted models. The R scores were recorded as 0.956 for Cr in water, 0.987 for Cr in the plant, 0.992 for bioconcentration factor (BCF), and 0.957 for Cr removal through the Firefly-RF model. The findings illustrated superior prediction performance from the random forest models when compared to the response surface methodology. The conclusion is drawn that metal-based nanoparticles (NPs) can effectively be utilized for nano-phytoremediation of heavy metals. This study has uncovered a promising outlook for the utilization of nanoparticles in nano-phytoremediation. This study is expected to pave the way for future research on the topic, facilitating further exploration of various nanoparticles and a thorough evaluation of their potential in aquatic ecosystems.

摘要

纳米植物修复是一种从环境中去除有毒污染物的新型绿色技术。在体外再生的水蕴草(Ceratophyllum demersum(L.))植物在存在二氧化钛纳米粒子(TiONPs)的情况下,暴露于不同浓度的铬(Cr)和暴露时间。响应面法用于多种统计分析,如回归分析和优化图。NP 的补充显著影响水中的 Cr 和 Cr 去除(%),而 NP×暴露时间(T)统计上调节所有输出参数。萤火虫元启发式算法和随机森林(Firefly-RF)机器学习算法被合并以优化超参数,旨在实现预测模型的最高准确性。记录的 R 分数为 0.956(水中的 Cr)、0.987(植物中的 Cr)、0.992(生物浓缩系数(BCF))和 0.957(通过 Firefly-RF 模型去除 Cr)。与响应面方法相比,随机森林模型的预测性能更好。结论是金属基纳米粒子(NP)可有效用于重金属的纳米植物修复。本研究揭示了纳米粒子在纳米植物修复中的应用的广阔前景。本研究有望为该主题的未来研究铺平道路,促进对各种纳米粒子的进一步探索以及对它们在水生生态系统中的潜力的全面评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcce/11219440/38aa140c7c70/11356_2024_33911_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcce/11219440/6ed758af9b8c/11356_2024_33911_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcce/11219440/801bdeda7f44/11356_2024_33911_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcce/11219440/eccb7c7cd9b7/11356_2024_33911_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcce/11219440/1a9cfbe69b07/11356_2024_33911_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcce/11219440/36dbb2dc4637/11356_2024_33911_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcce/11219440/d4512903ace6/11356_2024_33911_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcce/11219440/38aa140c7c70/11356_2024_33911_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcce/11219440/6ed758af9b8c/11356_2024_33911_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcce/11219440/801bdeda7f44/11356_2024_33911_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcce/11219440/eccb7c7cd9b7/11356_2024_33911_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcce/11219440/1a9cfbe69b07/11356_2024_33911_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcce/11219440/36dbb2dc4637/11356_2024_33911_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcce/11219440/d4512903ace6/11356_2024_33911_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcce/11219440/38aa140c7c70/11356_2024_33911_Fig7_HTML.jpg

相似文献

[1]
A unified framework of response surface methodology and coalescing of Firefly with random forest algorithm for enhancing nano-phytoremediation efficiency of chromium via in vitro regenerated aquatic macrophyte coontail (Ceratophyllum demersum L.).

Environ Sci Pollut Res Int. 2024-6

[2]
Artificial intelligence-based approaches to evaluate and optimize phytoremediation potential of in vitro regenerated aquatic macrophyte Ceratophyllum demersum L.

Environ Sci Pollut Res Int. 2023-3

[3]
Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L.

Environ Technol. 2012

[4]
Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China.

Environ Sci Pollut Res Int. 2018-9-7

[5]
Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: A laboratory study.

Ecotoxicol Environ Saf. 2017-11-6

[6]
Phytoremediation potential of and to remove chromium and copper.

Environ Technol. 2018-11-4

[7]
Phytoremediation of nickel and chromium-containing industrial wastewaters by water lettuce ().

Int J Phytoremediation. 2023

[8]
Potential phytoremediation system using macrophyte to remove Cr from contaminated bottom sediments.

Environ Technol. 2023-8

[9]
Performance and efficiency services for the removal of hexavalent chromium from water by common macrophytes.

Int J Phytoremediation. 2021

[10]
Green synthesis and characterization of silver and copper nanoparticles and their use as an effective adsorbent for chromium removal and recovery from wastewater.

Environ Sci Pollut Res Int. 2023-11

本文引用的文献

[1]
Co-application of TiO nanoparticles and hyperaccumulator Brassica juncea L. for effective Cd removal from soil: Assessing the feasibility of using nano-phytoremediation.

J Environ Manage. 2023-9-1

[2]
Artificial intelligence-based approaches to evaluate and optimize phytoremediation potential of in vitro regenerated aquatic macrophyte Ceratophyllum demersum L.

Environ Sci Pollut Res Int. 2023-3

[3]
Application of response surface methodology and box-behnken design for the optimization of mercury removal by Ulva sp.

J Hazard Mater. 2023-3-5

[4]
Optimization of Pesticides Spray on Crops in Agriculture using Machine Learning.

Comput Intell Neurosci. 2022

[5]
Modeling phytoremediation of heavy metal contaminated soils through machine learning.

J Hazard Mater. 2023-1-5

[6]
Coupling biostimulation and phytoremediation for the restoration of petroleum hydrocarbon-contaminated soil.

Int J Phytoremediation. 2023

[7]
New strategies on the application of artificial intelligence in the field of phytoremediation.

Int J Phytoremediation. 2023

[8]
Prediction of Soil Heavy Metal Immobilization by Biochar Using Machine Learning.

Environ Sci Technol. 2022-4-5

[9]
Phytoremediation: Data on effects of titanium dioxide nanoparticles on phytoremediation of antimony polluted soil.

Data Brief. 2020-7-3

[10]
Modeling and optimizing the removal of cadmium by L. from contaminated soil via Response Surface Methodology and Artificial Neural Networks during assisted phytoremediation with sewage sludge.

Int J Phytoremediation. 2020-5-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索