Department of Information Systems and Technologies, Bilkent University, Ankara, Turkey.
Department of Environmental Protection Technology, Kazım Karabekir Vocational School, Karamanoğlu Mehmetbey University, 70600, Karaman, Turkey.
Environ Sci Pollut Res Int. 2024 Jun;31(29):42185-42201. doi: 10.1007/s11356-024-33911-9. Epub 2024 Jun 11.
Nano-phytoremediation is a novel green technique to remove toxic pollutants from the environment. In vitro regenerated Ceratophyllum demersum (L.) plants were exposed to different concentrations of chromium (Cr) and exposure times in the presence of titania nanoparticles (TiONPs). Response surface methodology was used for multiple statistical analyses like regression analysis and optimizing plots. The supplementation of NPs significantly impacted Cr in water and Cr removal (%), whereas NP × exposure time (T) statistically regulated all output parameters. The Firefly metaheuristic algorithm and the random forest (Firefly-RF) machine learning algorithms were coalesced to optimize hyperparameters, aiming to achieve the highest level of accuracy in predicted models. The R scores were recorded as 0.956 for Cr in water, 0.987 for Cr in the plant, 0.992 for bioconcentration factor (BCF), and 0.957 for Cr removal through the Firefly-RF model. The findings illustrated superior prediction performance from the random forest models when compared to the response surface methodology. The conclusion is drawn that metal-based nanoparticles (NPs) can effectively be utilized for nano-phytoremediation of heavy metals. This study has uncovered a promising outlook for the utilization of nanoparticles in nano-phytoremediation. This study is expected to pave the way for future research on the topic, facilitating further exploration of various nanoparticles and a thorough evaluation of their potential in aquatic ecosystems.
纳米植物修复是一种从环境中去除有毒污染物的新型绿色技术。在体外再生的水蕴草(Ceratophyllum demersum(L.))植物在存在二氧化钛纳米粒子(TiONPs)的情况下,暴露于不同浓度的铬(Cr)和暴露时间。响应面法用于多种统计分析,如回归分析和优化图。NP 的补充显著影响水中的 Cr 和 Cr 去除(%),而 NP×暴露时间(T)统计上调节所有输出参数。萤火虫元启发式算法和随机森林(Firefly-RF)机器学习算法被合并以优化超参数,旨在实现预测模型的最高准确性。记录的 R 分数为 0.956(水中的 Cr)、0.987(植物中的 Cr)、0.992(生物浓缩系数(BCF))和 0.957(通过 Firefly-RF 模型去除 Cr)。与响应面方法相比,随机森林模型的预测性能更好。结论是金属基纳米粒子(NP)可有效用于重金属的纳米植物修复。本研究揭示了纳米粒子在纳米植物修复中的应用的广阔前景。本研究有望为该主题的未来研究铺平道路,促进对各种纳米粒子的进一步探索以及对它们在水生生态系统中的潜力的全面评估。
Environ Sci Pollut Res Int. 2018-9-7
Ecotoxicol Environ Saf. 2017-11-6
Environ Technol. 2018-11-4
Int J Phytoremediation. 2023
Int J Phytoremediation. 2021
Comput Intell Neurosci. 2022
J Hazard Mater. 2023-1-5
Int J Phytoremediation. 2023
Int J Phytoremediation. 2023
Environ Sci Technol. 2022-4-5