Suppr超能文献

机器学习方法在智能电网中的攻击检测。

Machine Learning Methods for Attack Detection in the Smart Grid.

出版信息

IEEE Trans Neural Netw Learn Syst. 2016 Aug;27(8):1773-86. doi: 10.1109/TNNLS.2015.2404803. Epub 2015 Mar 19.

Abstract

Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.

摘要

在智能电网中,攻击检测问题被表述为针对不同攻击场景的统计学习问题,其中测量值在批量或在线设置中进行观测。在这种方法中,机器学习算法用于将测量值分类为安全或受到攻击。提供了一种攻击检测框架,以利用关于系统的任何可用先验知识,并克服所提出方法中问题的稀疏结构所带来的约束。使用决策级和特征级融合来对攻击检测问题进行建模,采用了批处理和在线学习算法(监督和半监督)。分析了攻击场景和学习算法中使用的攻击向量的统计和几何属性之间的关系,以使用统计学习方法检测不可见攻击。在所提出的攻击检测框架中,对各种 IEEE 测试系统进行了算法检验。实验分析表明,机器学习算法可以检测到攻击,其性能优于使用状态向量估计方法的攻击检测算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验