Suppr超能文献

大规模患者记录的分层分类,用于自动治疗分层。

Hierarchical classification of large-scale patient records for automatic treatment stratification.

出版信息

IEEE J Biomed Health Inform. 2015 Jul;19(4):1234-45. doi: 10.1109/JBHI.2015.2414876. Epub 2015 Mar 19.

Abstract

In this paper, a hierarchical learning algorithm is developed for classifying large-scale patient records, e.g., categorizing large-scale patient records into large numbers of known patient categories (i.e., thousands of known patient categories) for automatic treatment stratification. Our hierarchical learning algorithm can leverage tree structure to train more discriminative max-margin classifiers for high-level nodes and control interlevel error propagation effectively. By ruling out unlikely groups of patient categories (i.e., irrelevant high-level nodes) at an early stage, our hierarchical approach can achieve log-linear computational complexity, which is very attractive for big data applications. Our experiments on one specific medical domain have demonstrated that our hierarchical approach can achieve very competitive results on both classification accuracy and computational efficiency as compared with other state-of-the-art techniques.

摘要

在本文中,我们开发了一种分层学习算法,用于对大规模的患者记录进行分类,例如,将大规模的患者记录分类为大量已知的患者类别(即数千个已知的患者类别),以进行自动治疗分层。我们的分层学习算法可以利用树结构为高层节点训练更具判别力的最大间隔分类器,并有效控制层间误差传播。通过在早期排除不太可能的患者类别组(即不相关的高层节点),我们的分层方法可以实现对数线性的计算复杂度,这对于大数据应用非常有吸引力。我们在一个特定的医疗领域的实验表明,与其他最先进的技术相比,我们的分层方法在分类准确性和计算效率方面都能取得非常有竞争力的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验