He Xiaoming, Cao Bing, Hauger Tate C, Kang Minkyu, Gusarov Sergey, Luber Erik J, Buriak Jillian M
†National Institute for Nanotechnology, National Research Council, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada.
‡Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
ACS Appl Mater Interfaces. 2015 Apr 22;7(15):8188-99. doi: 10.1021/acsami.5b01063. Epub 2015 Apr 6.
Two isostructural low-band-gap small molecules that contain a one-atom substitution, S for Se, were designed and synthesized. The molecule 7,7'-[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene]bis[6-fluoro-4-(5'-hexyl-2,2'-bithiophen-5-yl)benzo[c][1,2,5]thiadiazole] (1) and its selenium analogue 7,7'-[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene]bis[6-fluoro-4-(5'-hexyl-2,2'-bithiophen-5-yl)benzo[c][1,2,5]selenodiazole] (2) are both based on the electron-rich central unit benzo[1,2-b:4,5-b']dithiophene. The aim of this work was to investigate the effect of one-atom substitution on the optoelectronic properties and photovoltaic performance of devices. Theoretical calculations revealed that this one-atom variation has a small but measurable effect on the energy of frontier molecular orbital (HOMO and LUMO), which, in turn, can affect the absorption profile of the molecules, both neat and when mixed in a bulk heterojunction (BHJ) with PC71BM. The Se-containing variant 2 led to higher efficiencies [highest power conversion efficiency (PCE) of 2.6%] in a standard organic photovoltaic architecture, when combined with PC71BM after a brief thermal annealing, than the S-containing molecule 1 (highest PCE of 1.0%). Studies of the resulting morphologies of BHJs based on 1 and 2 showed that one-atom substitution could engender important differences in the solubilities, which then influenced the crystal orientations of the small molecules within this thin layer. Brief thermal annealing resulted in rotation of the crystalline grains of both molecules to more energetically favorable configurations.
设计并合成了两种含有单原子取代(硫取代硒)的同构低带隙小分子。分子7,7'-[4,8-双(2-乙基己氧基)苯并[1,2-b:4,5-b']二噻吩]双6-氟-4-(5'-己基-2,2'-联噻吩-5-基)苯并[c][1,2,5]噻二唑及其硒类似物7,7'-[4,8-双(2-乙基己氧基)苯并[1,2-b:4,5-b']二噻吩]双6-氟-4-(5'-己基-2,2'-联噻吩-5-基)苯并[c][1,2,5]硒二唑均基于富电子中心单元苯并[1,2-b:4,5-b']二噻吩。这项工作的目的是研究单原子取代对器件光电性能和光伏性能的影响。理论计算表明,这种单原子变化对前线分子轨道(最高占据分子轨道和最低未占据分子轨道)的能量有微小但可测量的影响,进而会影响分子的吸收光谱,无论是纯分子还是与PC71BM混合形成本体异质结(BHJ)时的吸收光谱。在标准有机光伏结构中,含硒变体2在短暂热退火后与PC71BM结合时,比含硫分子1(最高功率转换效率为1.0%)具有更高的效率[最高功率转换效率(PCE)为2.6%]。对基于1和2的BHJ所形成形态的研究表明,单原子取代会导致溶解度产生重要差异,进而影响该薄层内小分子的晶体取向。短暂热退火导致两种分子的晶粒旋转至能量上更有利的构型。