Suppr超能文献

通过重新排序自动校准数据采集来减少加速回波平面成像中由于呼吸和运动引起的灵敏度损失。

Reducing sensitivity losses due to respiration and motion in accelerated echo planar imaging by reordering the autocalibration data acquisition.

作者信息

Polimeni Jonathan R, Bhat Himanshu, Witzel Thomas, Benner Thomas, Feiweier Thorsten, Inati Souheil J, Renvall Ville, Heberlein Keith, Wald Lawrence L

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA.

Siemens Medical Solutions USA Inc., Charlestown, MA, USA.

出版信息

Magn Reson Med. 2016 Feb;75(2):665-79. doi: 10.1002/mrm.25628. Epub 2015 Mar 23.

Abstract

PURPOSE

To reduce the sensitivity of echo-planar imaging (EPI) auto-calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal-to-noise ratio (tSNR) of accelerated EPI time-series data.

METHODS

ACS data for accelerated EPI are generally acquired using segmented, multishot EPI to distortion-match the ACS and time-series data. The ACS data are, therefore, typically collected over multiple TR periods, leading to increased vulnerability to motion and dynamic B0 changes. The fast low-angle excitation echo-planar technique (FLEET) is adopted to reorder the ACS segments so that segments within any given slice are acquired consecutively in time, thereby acquiring ACS data for each slice as rapidly as possible.

RESULTS

Subject breathhold and motion phantom experiments demonstrate that artifacts in the ACS data reduce tSNR and produce tSNR discontinuities across slices in the accelerated EPI time-series data. Accelerated EPI data reconstructed using FLEET-ACS exhibit improved tSNR and increased tSNR continuity across slices. Additionally, image quality is improved dramatically when bulk motion occurs during the ACS acquisition.

CONCLUSION

FLEET-ACS provides reduced respiration and motion sensitivity in accelerated EPI, which yields higher tSNR and image quality. Benefits are demonstrated in both conventional-resolution 3T and high-resolution 7T EPI time-series data.

摘要

目的

降低回波平面成像(EPI)自动校准信号(ACS)数据对患者呼吸和运动的敏感性,以提高加速EPI时间序列数据的图像质量和时间信噪比(tSNR)。

方法

加速EPI的ACS数据通常使用分段多激发EPI采集,以使ACS和时间序列数据的失真匹配。因此,ACS数据通常在多个TR周期内采集,导致对运动和动态B0变化的敏感性增加。采用快速低角度激发回波平面技术(FLEET)对ACS段进行重新排序,以便在任何给定切片内的段在时间上连续采集,从而尽可能快地为每个切片采集ACS数据。

结果

受试者屏气和运动体模实验表明,ACS数据中的伪影会降低tSNR,并在加速EPI时间序列数据的各切片间产生tSNR不连续性。使用FLEET-ACS重建的加速EPI数据显示出改善的tSNR和各切片间增加的tSNR连续性。此外,当在ACS采集期间发生整体运动时,图像质量会显著提高。

结论

FLEET-ACS在加速EPI中提供了降低的呼吸和运动敏感性,从而产生更高的tSNR和图像质量。在传统分辨率3T和高分辨率7T EPI时间序列数据中均证明了其优势。

相似文献

10
Model-based iterative reconstruction for single-shot EPI at 7T.基于模型的单次激发 EPI 在 7T 下的迭代重建。
Magn Reson Med. 2017 Dec;78(6):2250-2264. doi: 10.1002/mrm.26633. Epub 2017 Feb 10.

引用本文的文献

本文引用的文献

3
The future of acquisition speed, coverage, sensitivity, and resolution.采集速度、覆盖范围、灵敏度和分辨率的未来。
Neuroimage. 2012 Aug 15;62(2):1221-9. doi: 10.1016/j.neuroimage.2012.02.077. Epub 2012 Mar 6.
4
A k-space analysis of small-tip-angle excitation. 1989.小角度激发的k空间分析。1989年。
J Magn Reson. 2011 Dec;213(2):544-57. doi: 10.1016/j.jmr.2011.09.023.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验