Lee Youngil, Kubli Dieter A, Hanna Rita A, Cortez Melissa Q, Lee Hwa-Youn, Miyamoto Shigeki, Gustafsson Åsa B
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California; and.
Department of Pharmacology, University of California, San Diego, La Jolla, California.
Am J Physiol Cell Physiol. 2015 Jun 15;308(12):C983-92. doi: 10.1152/ajpcell.00273.2014. Epub 2015 Mar 25.
The atypical BH3-only protein Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNIP3) is an important regulator of hypoxia-mediated cell death. Interestingly, the susceptibility to BNIP3-mediated cell death differs between cells. In this study we examined whether there are mechanistic differences in BNIP3-mediated cell death between neonatal and adult cardiac myocytes. We discovered that BNIP3 is a potent inducer of cell death in neonatal myocytes, whereas adult myocytes are remarkably resistant to BNIP3. When exploring the potential underlying basis for the resistance, we discovered that adult myocytes express significantly higher levels of the mitochondrial antioxidant manganese superoxide dismutase (MnSOD) than neonatal myocytes. Overexpression of MnSOD confers resistance to BNIP3-mediated cell death in neonatal myocytes. In contrast, the presence of a pharmacological MnSOD inhibitor, 2-methoxyestradiol, results in increased sensitivity to BNIP3-mediated cell death in adult myocytes. Cotreatment with the mitochondria-targeted antioxidant MitoTEMPO or the MnSOD mimetic manganese (III) tetrakis (4-benzoic acid) porphyrin chloride abrogates the increased cell death by 2-methoxyestradiol. Moreover, increased oxidative stress also restores the ability of BNIP3 to induce cell death in adult myocytes. Taken together, these data indicate that redox status determines cell susceptibility to BNIP3-mediated cell death. These findings are clinically relevant, given that pediatric hearts are known to be more vulnerable than the adult heart to ischemic injury. Our studies provide important insight into why pediatric hearts are more sensitive to ischemic injury and may help in the clinical management of childhood heart disease.
非典型仅含BH3结构域的蛋白Bcl-2/腺病毒E1B 19 kDa相互作用蛋白3(BNIP3)是缺氧介导的细胞死亡的重要调节因子。有趣的是,不同细胞对BNIP3介导的细胞死亡的易感性存在差异。在本研究中,我们检测了新生和成年心肌细胞在BNIP3介导的细胞死亡方面是否存在机制上的差异。我们发现BNIP3是新生心肌细胞中细胞死亡的有效诱导剂,而成年心肌细胞对BNIP3具有显著抗性。在探究这种抗性的潜在基础时,我们发现成年心肌细胞中线粒体抗氧化剂锰超氧化物歧化酶(MnSOD)的表达水平显著高于新生心肌细胞。MnSOD的过表达赋予新生心肌细胞对BNIP3介导的细胞死亡的抗性。相反,药理学MnSOD抑制剂2-甲氧基雌二醇的存在导致成年心肌细胞对BNIP3介导的细胞死亡的敏感性增加。与线粒体靶向抗氧化剂MitoTEMPO或MnSOD模拟物四(4-苯甲酸)氯化锰卟啉共同处理可消除2-甲氧基雌二醇导致的细胞死亡增加。此外,氧化应激增加也恢复了BNIP3在成年心肌细胞中诱导细胞死亡的能力。综上所述,这些数据表明氧化还原状态决定了细胞对BNIP3介导的细胞死亡的易感性。鉴于已知小儿心脏比成人心脏更容易受到缺血性损伤,这些发现具有临床相关性。我们的研究为小儿心脏为何对缺血性损伤更敏感提供了重要见解,并可能有助于儿童心脏病的临床管理。